Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Microbiology (Reading) ; 166(3): 253-261, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31896394

RESUMO

We found an elastolytic activity in the culture supernatant of Streptomyces sp. P-3, and the corresponding enzyme (streptomycetes elastase, SEL) was purified to apparent homogeneity from the culture supernatant. The molecular mass of purified SEL was approximately 18 kDa as judged by SDS-PAGE analysis and gel-filtration chromatography. Utilizing information from N-terminal amino acid sequencing of SEL and mass spectrometry of SEL tryptic fragments, we succeeded in cloning the gene-encoding SEL. The cloned SEL gene contains a 726 bp ORF, which encodes a 241 amino acid polypeptide containing a putative signal peptide for secretion (28 amino acid) and pro-sequence (14 amino acid). Although the deduced primary structure of SEL has sequence similarity to proteins in the S1 protease family, the amino acid sequence shares low identity (< 31.5 %) with any known elastase. SEL efficiently hydrolyses synthetic peptides having Ala or Val in the P1 position such as N-succinyl-Ala-Ala-(Pro or Val)-Ala-p-nitroanilide (pNA), whereas reported proteases by streptomycetes having elastolytic activity prefer large residues, such as Phe and Leu. Compared of kcat/Km ratios for Suc-Ala-Ala-Val-Ala-pNA and Suc-Ala-Ala-Pro-Ala-pNA with subtilisin YaB, which has high elastolytic activity, Streptomyces sp. P-3 SEL exhibits 12- and 121-fold higher, respectively. Phylogenetic analyses indicate that the predicted SEL protein, together with predicted proteins in streptomycetes, constitutes a novel group within the S1 serine protease family. These characteristics suggest that SEL-like proteins are new members of the S1 serine protease family, which display elastolytic activity.


Assuntos
Elastase Pancreática , Serina Proteases , Streptomyces/enzimologia , Genes Bacterianos , Elastase Pancreática/biossíntese , Elastase Pancreática/química , Elastase Pancreática/genética , Elastase Pancreática/isolamento & purificação , Filogenia , Serina Proteases/biossíntese , Serina Proteases/química , Serina Proteases/genética , Serina Proteases/isolamento & purificação
2.
Biosci Biotechnol Biochem ; 84(4): 734-742, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31842701

RESUMO

scyllo-inositol dehydrogenase, isolated from Paracoccus laeviglucosivorans (Pl-sIDH), exhibits a broad substrate specificity: it oxidizes scyllo- and myo-inositols as well as L-glucose, converting L-glucose to L-glucono-1,5-lactone. Based on the crystal structures previously reported, Arg178 residue, located at the entry port of the catalytic site, seemed to be important for accepting substrates. Here, we report the role of Arg178 by using an alanine-substituted mutant for kinetic analysis as well as to determine the crystal structures. The wild-type Pl-sIDH exhibits the activity for scyllo-inositol most preferably followed by myo-inositol and L-glucose. On the contrary, the R178A mutant abolished the activities for both inositols, but remained active for L-glucose to the same extent as its wild-type. Based on the crystal structures of the mutant, the side chain of Asp191 flipped out of the substrate binding site. Therefore, Arg178 is important in positioning Asp191 correctly to exert its catalytic activities.Abbreviations: IDH: inositol dehydrogenase; LB: Luria-Bertani; kcat: catalyst rate constant; Km: Michaelis constant; NAD: nicotinamide dinucleotide; NADH: nicotinamide dinucleotide reduced form; PDB; Protein Data Bank; PDB entry: 6KTJ, 6KTK, 6KTL.


Assuntos
Substituição de Aminoácidos , Glucose/metabolismo , Inositol/metabolismo , Oxirredutases/metabolismo , Paracoccus/enzimologia , Cinética , Oxirredutases/isolamento & purificação , Conformação Proteica , Especificidade por Substrato
3.
PLoS One ; 13(5): e0198010, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29799855

RESUMO

For about 70 years, L-glucose had been considered non-metabolizable by either mammalian or bacterial cells. Recently, however, an L-glucose catabolic pathway has been discovered in Paracoccus laeviglucosivorans, and the genes responsible cloned. Scyllo-inositol dehydrogenase is involved in the first step in the pathway that oxidizes L-glucose to produce L-glucono-1,5-lactone with concomitant reduction of NAD+ dependent manner. Here, we report the crystal structure of the ternary complex of scyllo-inositol dehydrogenase with NAD+ and L-glucono-1,5-lactone at 1.8 Å resolution. The enzyme adopts a homo-tetrameric structure, similar to those of the inositol dehydrogenase family, and the electron densities of the bound sugar was clearly observed, allowing identification of the residues responsible for interaction with the substrate in the catalytic site. In addition to the conserved catalytic residues (Lys106, Asp191, and His195), another residue, His318, located in the loop region of the adjacent subunit, is involved in substrate recognition. Site-directed mutagenesis confirmed the role of these residues in catalytic activity. We also report the complex structures of the enzyme with myo-inositol and scyllo-inosose. The Arg178 residue located in the flexible loop at the entrance of the catalytic site is also involved in substrate recognition, and plays an important role in accepting both L-glucose and inositols as substrates. On the basis of these structural features, which have not been identified in the known inositol dehydrogenases, and a phylogenetic analysis of IDH family enzymes, we suggest a novel subfamily of the GFO/IDH/MocA family. Since many enzymes in this family have not biochemically characterized, our results could promote to find their activities with various substrates.


Assuntos
Glucose/metabolismo , Inositol/metabolismo , Desidrogenase do Álcool de Açúcar/química , Desidrogenase do Álcool de Açúcar/metabolismo , Sequência de Aminoácidos , Modelos Moleculares , Mutação , Oxirredução , Conformação Proteica , Desidrogenase do Álcool de Açúcar/genética
4.
J Struct Biol ; 183(1): 76-85, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23747390

RESUMO

Aminoglycoside 4-phosphotransferase-Ia (APH(4)-Ia)/Hygromycin B phosphotransferase (Hph) inactivates the aminoglycoside antibiotic hygromycin B (hygB) via phosphorylation. The crystal structure of the binary complex of APH(4)-Ia with hygB was recently reported. To characterize substrate recognition by the enzyme, we determined the crystal structure of the ternary complex of non-hydrolyzable ATP analog AMP-PNP and hygB with wild-type, thermostable Hph mutant Hph5, and apo-mutant enzyme forms. The comparison between the ternary complex and apo structures revealed that Hph undergoes domain movement upon binding of AMP-PNP and hygB. This was about half amount of the case of APH(9)-Ia. We also determined the crystal structures of mutants in which the conserved, catalytically important residues Asp198 and Asn203, and the non-conserved Asn202, were converted to Ala, revealing the importance of Asn202 for catalysis. Hph5 contains five amino acid substitutions that alter its thermostability by 16°C; its structure revealed that 4/5 mutations in Hph5 are located in the hydrophobic core and appear to increase thermostability by strengthening hydrophobic interactions.


Assuntos
Higromicina B/química , Canamicina Quinase/química , Fosfotransferases (Aceptor do Grupo Álcool)/química , Sítios de Ligação , Cristalografia , Escherichia coli/enzimologia , Escherichia coli/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Fosforilação , Estabilidade Proteica , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA