Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Front Pharmacol ; 13: 980723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263130

RESUMO

Background: Critically ill patients on supplemental oxygen therapy eventually develop acute lung injury (ALI). Reactive oxygen species (ROS) produced during ALI perturbs the mitochondrial dynamics resulting in cellular damage. Genetic deletion of the mitochondrial A-kinase anchoring protein 1 (Akap1) in mice resulted in mitochondrial damage, Endoplasmic reticulum (ER) stress, increased expression of mitophagy proteins and pro-inflammatory cytokines, exacerbating hyperoxia-induced Acute Lung Injury (HALI). Objective: Despite a strong causal link between mitochondrial dysfunction and HALI, the mechanisms governing the disease progression at the transcriptome level is unknown. Methods: In this study, RNA sequencing (RNA-seq) analysis was carried out using the lungs of Akap1 knockout (Akap1 -/-) mice exposed to normoxia or 48 h of hyperoxia followed by quantitative real time PCR and Ingenuity pathway analysis (IPA). Western blot analysis assessed mitochondrial dysfunction, OXPHOS complex (I-V), apoptosis and antioxidant proteins. Mitochondrial enzymatic assays was used to measure the aconitase, fumarase, citrate synthase activities in isolated mitochondria from Akap1 -/- vs. Wt mice exposed to hyperoxia. Results: Transcriptome analysis of Akap1 -/- exposed to hyperoxia reveals increases in transcripts encoding electron transport chain (ETC) and tricarboxylic acid cycle (TCA) proteins. Ingenuity pathway analysis (IPA) shows enrichment of mitochondrial dysfunction and oxidative phosphorylation in Akap1 -/- mice. Loss of AKAP1, coupled with oxidant injury, significantly decreases the activities of TCA enzymes. Mechanistically, a significant loss of dynamin-related protein 1 (Drp1) phosphorylation at the protein kinase A (PKA) site Serine 637 (Ser637), decreases in Akt phosphorylation at Serine 437 (Ser47) and increase in the expression of pro-apoptotic protein Bax indicate mitochondrial dysfunction. Heme oxygenase-1 (HO-1) levels significantly increased in CD68 positive alveolar macrophages in Akap1 -/- lungs, suggesting a strong antioxidant response to hyperoxia. Conclusion: Overall these results suggest that AKAP1 overexpression and modulation of Drp1 phosphorylation at Ser637 is an important therapeutic strategy for acute lung injury.

2.
Front Pharmacol ; 13: 890380, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910393

RESUMO

Rationale: Idiopathic pulmonary fibrosis (IPF) is characterized by mitochondrial dysfunction. However, details about the non-mitochondrial enzymes that sustain the proliferative nature of IPF are unclear. Aconitases are a family of enzymes that sustain metabolism inside and outside mitochondria. It is hypothesized that aconitase 1 (ACO1) plays an important role in the pathogenesis of IPF given that ACO1 represents an important metabolic hub in the cytoplasm. Objectives: To determine if ACO1 expression in IPF lungs shows specific patterns that may be important in the pathogenesis of IPF. To determine the similarities and differences in ACO1 expression in IPF, bleomycin-treated, and aging lungs. Methods: ACO1 expression in IPF lungs were characterized and compared to non-IPF controls by western blotting, immunostaining, and enzymatic activity assay. ACO1-expressing cell types were identified by multicolor immunostaining. Using similar methods, the expression profiles of ACO1 in IPF lungs versus bleomycin-treated and aged mice were investigated. Measurements and main results: Lower lobes of IPF lungs, unlike non-IPF controls, exhibit significantly high levels of ACO1. Most of the signals colocalize with von Willebrand factor (vWF), a lineage marker for vascular endothelial cells. Bleomycin-treated lungs also show high ACO1 expressions. However, most of the signals colocalize with E-cadherin and/or prosurfactant protein C, representative epithelial cell markers, in remodeled areas. Conclusions: A characteristic ACO1 expression profile observed in IPF vasculatures may be a promising diagnostic target. It also may give clues as to how de novo angiogenesis contributes to the irreversible nature of IPF.

3.
Front Pharmacol ; 13: 762840, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35370705

RESUMO

Acute lung injury (ALI) and its severe manifestation, acute respiratory distress syndrome (ARDS), are treated with high concentrations of supplementary oxygen. However, prolonged exposure to high oxygen concentrations stimulates the production of reactive oxygen species (ROS), which damages the mitochondria and accumulates misfolded proteins in the endoplasmic reticulum (ER). The mitochondrial protein A-kinase anchoring protein 1 (Akap1) is critical for mitochondrial homeostasis. It is known that Akap1 deficiency results in heart damage, neuronal development impairment, and mitochondrial malfunction in preclinical studies. Our laboratory recently revealed that deleting Akap1 increases the severity of hyperoxia-induced ALI in mice. To assess the role of Akap1 deletion in ER stress in lung injury, wild-type and Akap1 -/- mice were exposed to hyperoxia for 48 h. This study indicates that Akap1 -/- mice exposed to hyperoxia undergo ER stress, which is associated with an increased expression of BiP, JNK phosphorylation, eIF2α phosphorylation, ER stress-induced cell death, and autophagy. This work demonstrates that deleting Akap1 results in increased ER stress in the lungs of mice and that hyperoxia exacerbates ER stress-related consequences.

4.
Biomolecules ; 12(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204783

RESUMO

Abnormalities in airway epithelia and lung parenchyma are found in Atp8b1 mutant mice, which develop pulmonary fibrosis after hyperoxic insult. Microarray and ingenuity pathway analysis (IPA) show numerous transcripts involved in ciliogenesis are downregulated in 14-month (14 M) -old Atp8b1 mouse lung compared with wild-type C57BL/6. Lung epithelium of Atp8b1 mice demonstrate apical abnormalities of ciliated and club cells in the bronchial epithelium on transmission electron microscopy (TEM). Matrix metalloproteinase 7 (MMP7) regulates of ciliogenesis and is a biomarker for idiopathic pulmonary fibrosis (IPF) in humans. Mmp7 transcript and protein expression are significantly upregulated in 14 M Atp8b1 mutant mouse lung. MMP7 expression is also increased in bronchoalveolar lavage fluid (BAL). Immunohistochemistry is localized MMP7 to bronchial epithelial cells in the Atp8b1 mutant. In conclusion, MMP7 is upregulated in the aged Atp8b1 mouse model, which displays abnormal ciliated cell and club cell morphology. This mouse model can facilitate the exploration of the role of MMP7 in epithelial integrity and ciliogenesis in IPF. The Atp8b1 mutant mouse is proposed as a model for IPF.


Assuntos
Adenosina Trifosfatases , Fibrose Pulmonar Idiopática , Metaloproteinase 7 da Matriz , Proteínas de Transferência de Fosfolipídeos , Adenosina Trifosfatases/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transferência de Fosfolipídeos/metabolismo
5.
FASEB J ; 36(2): e22143, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34985777

RESUMO

Adenosine deaminase acting on RNA 2 (ADAR2), an RNA editing enzyme is involved in a site-selective modification of adenosine (A) to inosine (I) in double-stranded RNA (dsRNA). Its role in the lungs is unknown. The phenotypic characterization of Adarb1 mice that lacked ADAR2 auto-regulation due to the deletion of editing complementary sequence (ΔECS mice) determined the functional role of ADAR2 in the lungs. ADAR2 protein expression increased in the ΔECS mice. These mice display immune cell infiltration and alveolar disorganization. The lung wet by dry ratio indicates there is no lung edema in ΔECS mice. Bronchoalveolar lavage (BAL) analysis of ΔECS mice reveals a significant increase in neutrophils. Interestingly, ΔECS mice spontaneously develop lung fibrosis as indicated by Sirius red staining of collagen fibers in the lung sections and a significant increase in hydroxyproline level in their lungs. ADAR2 expression increased significantly in a bleomycin mouse model, implicating a role of ADAR2 in lung fibrosis. Furthermore, there is a likely possibility that the genetically modified ΔECS mice does not model the physiological or pathophysiological process of lung fibrosis. Nevertheless, this model is useful in interrogating the role of ADAR2 in the lungs. The Ctgf mRNA and connective tissue growth factor (CTGF) protein significantly increased in ΔECS lungs and occurs in bronchial epithelial cells. There is a significant increase in Human antigen R (ELAVL1; HuR) protein levels in ΔECS lungs and suggests a role in stabilizing Ctgf mRNA. Lung mechanics such as total respiratory resistance, Newtonian resistance and tissue damping were increased, whereas inspiratory capacity was decreased in the ΔECS mice. Taken together, these data indicate that overexpression of ADAR2 causes spontaneous lung fibrosis via HuR-mediated CTGF signaling and implicate a role for ADAR2 auto-regulation in lung homeostasis. The identification of ADAR2 target genes in ΔECS mice would facilitate a mechanistic understanding of the role of ADAR2 in the lungs and provide a therapeutic strategy for lung fibrosis.


Assuntos
Adenosina Desaminase/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Pulmão/metabolismo , Fibrose Pulmonar/metabolismo , Proteínas de Ligação a RNA/metabolismo , Transdução de Sinais/fisiologia , Animais , Bleomicina/farmacologia , Modelos Animais de Doenças , Feminino , Humanos , Pulmão/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fibrose Pulmonar/tratamento farmacológico , RNA Mensageiro/metabolismo , Transdução de Sinais/efeitos dos fármacos
6.
Front Pharmacol ; 11: 597942, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33597876

RESUMO

Acute lung injury (ALI), a milder form of acute respiratory distress syndrome (ARDS), is a leading cause of mortality in older adults with an increasing prevalence. Oxygen therapy, is a common treatment for ALI, involving exposure to a high concentration of oxygen. Unfortunately, hyperoxia induces the formation of reactive oxygen species which can cause an increase in 4-HNE (4-hydroxy 2 nonenal), a toxic byproduct of lipid peroxidation. Mitochondrial aldehyde dehydrogenase 2 (ALDH2) serves as an endogenous shield against oxidative stress-mediated damage by clearing 4-HNE. Alda-1 [(N-(1, 3 benzodioxol-5-ylmethyl)-2, 6- dichloro-benzamide)], a small molecular activator of ALDH2, protects against reactive oxygen species-mediated oxidative stress by promoting ALDH2 activity. As a result, Alda-1 shields against ischemic reperfusion injury, heart failure, stroke, and myocardial infarction. However, the mechanisms of Alda-1 in hyperoxia-induced ALI remains unclear. C57BL/6 mice implanted with Alzet pumps received Alda-1 in a sustained fashion while being exposed to hyperoxia for 48 h. The mice displayed suppressed immune cell infiltration, decreased protein leakage and alveolar permeability compared to controls. Mechanistic analysis shows that mice pretreated with Alda-1 also experience decreased oxidative stress and enhanced levels of p-Akt and mTOR pathway associated proteins. These results show that continuous delivery of Alda-1 protects against hyperoxia-induced lung injury in mice.

7.
Aging (Albany NY) ; 11(12): 3909-3918, 2019 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-31209184

RESUMO

Acute lung injury (ALI) is a major cause of morbidity and mortality worldwide, especially in aged populations. Mitochondrial damage is one of the key features of ALI. Hyperoxia-induced lung injury model in mice has been widely used for ALI study because it features many ALI phenotypes including, but not limited to, mitochondrial and vascular endothelial cell damage. Recently, accumulating evidence has shown that mitochondrial aldehyde dehydrogenase 2 (ALDH2) has a protective effect against oxidative stress mediated cell damage in epithelial cells. However, it is not known whether ALDH2 protects against oxidative stress in vascular endothelial cells. In this current study, we attempted to find the capacity of Alda-1 [(N-(1,3benzodioxol-5-ylmethyl)-2,6- dichloro-benzamide), an ALDH2 activator] to protect against oxidative stress in human microvascular endothelial cells (HMVEC). HMVEC pretreated with Alda-1 prior to hyperoxic exposure vs non-treated controls showed i) lower 4-hydroxynonenal (4-HNE) levels, ii) significantly decreased expressions of Bax and Cytochrome C, iii) partially restored activity and expression of ALDH2 and iv) significantly improved mitochondrial membrane potential. These results suggest that ALDH2 protein in lung vascular endothelial cells is a promising therapeutic target for the treatment of ALI and that Alda-1 is a potential treatment option.


Assuntos
Benzamidas/farmacologia , Benzodioxóis/farmacologia , Células Endoteliais/efeitos dos fármacos , Hiperóxia/fisiopatologia , Mitocôndrias/efeitos dos fármacos , Oxigênio/efeitos adversos , Lesão Pulmonar Aguda , Aldeído-Desidrogenase Mitocondrial/genética , Aldeído-Desidrogenase Mitocondrial/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Microvasos , Estresse Oxidativo/efeitos dos fármacos
8.
Aging (Albany NY) ; 11(1): 209-229, 2019 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-30636723

RESUMO

Atp8b1 (ATPase, aminophospholipid transporter, class I, type 8B, member 1) is a cardiolipin transporter in the apical membrane of lung epithelial cells. While the role of Atp8b1 in pneumonia-induced acute lung injury (ALI) has been well studied, its potential role in oxidative stress-induced ALI is poorly understood. We herein show that Atp8b1G308V/G308V mice under hyperoxic conditions display exacerbated cell apoptosis at alveolar epithelium and aberrant proliferation of club cells at bronchiolar epithelium. This hyperoxia-induced ambivalent response in Atp8b1G308V/G308V lungs was followed by patchy distribution of non-uniform interstitial fibrosis at late recovery phase under normoxia. Since this club cell abnormality is commonly observed between Atp8b1G308V/G308V lungs under hyperoxic conditions and IPF lungs, we characterized this mouse fibrosis model focusing on club cells. Intriguingly, subcellular morphological analysis of IPF lungs, using transmission electron microscopy (TEM), revealed that metaplastic bronchiolar epithelial cells in fibrotic lesions and deformed type II alveolar epithelial cells (AECs) in alveoli with mild fibrosis, have common morphological features including cytoplasmic vacuolation and dysmorphic lamellar bodies. In conclusion, the combination of Atp8b1 mutation and hyperoxic insult serves as a novel platform to study unfocused role of club cells in IPF.


Assuntos
Adenosina Trifosfatases/metabolismo , Oxigênio/toxicidade , Proteínas de Transferência de Fosfolipídeos/metabolismo , Fibrose Pulmonar/etiologia , Adenosina Trifosfatases/genética , Animais , Morte Celular , Proliferação de Células , Células Epiteliais/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Mutação , Estresse Oxidativo , Proteínas de Transferência de Fosfolipídeos/genética , Alvéolos Pulmonares/citologia , Uteroglobina/genética , Uteroglobina/metabolismo
9.
Am J Physiol Cell Physiol ; 316(4): C492-C508, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30649915

RESUMO

Aging is a key contributor for subclinical progression of late-onset lung diseases. Basal, club, and type II alveolar epithelial cells (AECs) are lung epithelial progenitors whose capacities of differentiation are extensively studied. The timely transition of these cells in response to environmental changes helps maintain the intricate organization of lung structure. However, it remains unclear how aging affects their behavior. This paper demonstrates that the protein expression profiles of a type II AEC marker, prosurfactant protein C (pro-SPC), and a basal cell marker, p63, are altered in the lungs of 14-mo-old versus 7- to 9-wk-old mice. Expression of NH2-terminal-truncated forms of p63 (ΔNp63), a basal cell marker, and claudin-10, a club cell marker, in cytoplasmic extracts of lungs of 14-mo-old mice was upregulated. In contrast, nuclear expression of full-length forms of p63 (TAp63) decreases with age. These alterations in protein expression profiles coincide with dramatic changes in lung functions including compliance. Whole tissue lysates of middle-aged versus aged rhesus monkey lungs display similar age-associated alterations in pro-SPC expression. An age-associated decrease of TAp63 in nuclear lysates was observed in aged monkey group. Moreover, the lungs of 14-mo-old versus 7- to 9-wk-old mice display a wider spreading of ΔNp63-positive CCSP-positive bronchiolar epithelial cells. This expansion did not involve upregulation of Ki67, a representative proliferation marker. Collectively, it is postulated that 1) this expansion is secondary to a transition of progenitor cells committed to club cells from ΔNp63-negative to ΔNp63-positive status, and 2) high levels of cytoplasmic ΔNp63 expression trigger club cell migration.


Assuntos
Envelhecimento/metabolismo , Células Epiteliais/metabolismo , Pulmão/metabolismo , Transativadores/biossíntese , Uteroglobina/biossíntese , Envelhecimento/patologia , Sequência de Aminoácidos , Animais , Células Epiteliais/patologia , Expressão Gênica , Células HEK293 , Humanos , Pulmão/patologia , Macaca mulatta , Camundongos , Camundongos Endogâmicos C57BL , Isoformas de Proteínas/biossíntese , Isoformas de Proteínas/genética , Células-Tronco/metabolismo , Células-Tronco/patologia , Transativadores/genética , Uteroglobina/genética
10.
Am J Physiol Lung Cell Mol Physiol ; 314(5): L860-L870, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29388469

RESUMO

Critically ill patients are commonly treated with high levels of oxygen, hyperoxia, for prolonged periods of time. Unfortunately, extended exposure to hyperoxia can exacerbate respiratory failure and lead to a high mortality rate. Mitochondrial A-kinase anchoring protein (Akap) has been shown to regulate mitochondrial function. It has been reported that, under hypoxic conditions, Akap121 undergoes proteolytic degradation and promotes cardiac injury. However, the role of Akap1 in hyperoxia-induced acute lung injury (ALI) is largely unknown. To address this gap in our understanding of Akap1, we exposed wild-type ( wt) and Akap1-/- mice to 100% oxygen for 48 h, a time point associated with lung damage in the murine model of ALI. We found that under hyperoxia, Akap1-/- mice display increased levels of proinflammatory cytokines, immune cell infiltration, and protein leakage in lungs, as well as increased alveolar capillary permeability compared with wt controls. Further analysis revealed that Akap1 deletion enhances lung NF-κB p65 activity as assessed by immunoblotting and DNA-binding assay and mitochondrial autophagy-related markers, PINK1 and Parkin. Ultrastructural analysis using electron microscopy revealed that Akap1 deletion was associated with remarkably aberrant mitochondria and lamellar bodies in type II alveolar epithelial cells. Taken together, these results demonstrate that Akap1 genetic deletion increases the severity of hyperoxia-induced acute lung injury in mice.


Assuntos
Proteínas de Ancoragem à Quinase A/fisiologia , Lesão Pulmonar Aguda/etiologia , Células Epiteliais Alveolares/patologia , Hiperóxia/complicações , Mitocôndrias/patologia , Oxigênio/metabolismo , Lesão Pulmonar Aguda/patologia , Células Epiteliais Alveolares/metabolismo , Animais , Deleção de Genes , Hiperóxia/fisiopatologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias/genética , Mitocôndrias/metabolismo , Deleção de Sequência
11.
Aging (Albany NY) ; 8(11): 3091-3109, 2016 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-27899769

RESUMO

Idiopathic pulmonary fibrosis (IPF) is an age-related multifactorial disease featuring non-uniform lung fibrosis. The decisive cellular events at early stages of IPF are poorly understood. While the involvement of club cells in IPF pathogenesis is unclear, their migration has been associated with lung fibrosis. In this study, we labeled club cells immunohistochemically in IPF lungs using a club cell marker Claudin-10 (Cldn10), a unique protein based on the recent report which demonstrated that the appearance of Cldn10 in developing and repairing lungs precedes other club cell markers including club cell secretory protein (CCSP). Cldn10-positive cells in IPF lungs displayed marked pleomorphism and were found in varied arrangements, suggesting their phenoconversion. These results were corroborated by immunogold labeling for Cldn10. Further, immunohistochemical double-labeling for Cldn10 and α-smooth muscle actin (α-SMA) demonstrated that aberrant α-SMA signals are frequently encountered near disorganized Cldn10-positive cells in hyperplastic bronchiolar epithelium and thickened interstitium of IPF lungs. Collectively, these data indicate that club cells actively participate in the initiation and progression of IPF through phenoconversion involving the acquisition of proliferative and migratory abilities. Thus, our new findings open the possibility for club cell-targeted therapy to become a strategic option for the treatment of IPF.


Assuntos
Actinas/metabolismo , Células Epiteliais Alveolares/metabolismo , Movimento Celular , Claudinas/metabolismo , Fibrose Pulmonar Idiopática/metabolismo , Células Epiteliais Alveolares/citologia , Humanos , Fibrose Pulmonar Idiopática/patologia , Pulmão/metabolismo , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Doença Pulmonar Obstrutiva Crônica/patologia
12.
Aging (Albany NY) ; 8(9): 2232-2252, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27689529

RESUMO

OBJECTIVE: Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. METHODS: We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). RESULTS: Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. CONCLUSION: Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases.


Assuntos
Adenosina Trifosfatases/genética , Envelhecimento/genética , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Adenosina Trifosfatases/metabolismo , Envelhecimento/metabolismo , Animais , Perfilação da Expressão Gênica , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transcriptoma
13.
PLoS One ; 11(1): e0147652, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26807721

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1), a member of the MAPK kinase kinase kinase (MAP3K) family, is activated by various stimuli, which include oxidative stress, endoplasmic reticulum (ER) stress, calcium influx, DNA damage-inducing agents and receptor-mediated signaling through tumor necrosis factor receptor (TNFR). Inspiration of a high concentration of oxygen is a palliative therapy which counteracts hypoxemia caused by acute lung injury (ALI)-induced pulmonary edema. However, animal experiments so far have shown that hyperoxia itself could exacerbate ALI through reactive oxygen species (ROS). Our previous data indicates that ASK1 plays a pivotal role in hyperoxia-induced acute lung injury (HALI). However, it is unclear whether or not deletion of ASK1 in vivo protects against HALI. In this study, we investigated whether ASK1 deletion would lead to attenuation of HALI. Our results show that ASK1 deletion in vivo significantly suppresses hyperoxia-induced elevation of inflammatory cytokines (i.e. IL-1ß and TNF-α), cell apoptosis in the lung, and recruitment of immune cells. In summary, the results from the study suggest that deletion of ASK1 in mice significantly inhibits hyperoxic lung injury.


Assuntos
Lesão Pulmonar Aguda/genética , Hiperóxia/complicações , Pulmão/metabolismo , MAP Quinase Quinase Quinase 5/genética , Lesão Pulmonar Aguda/etiologia , Lesão Pulmonar Aguda/patologia , Animais , Apoptose/genética , Epitélio/metabolismo , Epitélio/patologia , Hiperóxia/genética , Hiperóxia/patologia , Interleucina-1beta/metabolismo , Pulmão/patologia , MAP Quinase Quinase Quinase 5/metabolismo , Camundongos , Camundongos Knockout , Fator de Necrose Tumoral alfa/metabolismo
14.
Oncotarget ; 6(34): 35726-36, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26486088

RESUMO

RNA editing is a post-transcriptional modification of RNA. The majority of these changes result from adenosine deaminase acting on RNA (ADARs) catalyzing the conversion of adenosine residues to inosine in double-stranded RNAs (dsRNAs). Massively parallel sequencing has enabled the identification of RNA editing sites in human transcriptomes. In this study, we sequenced DNA and RNA from human lungs and identified RNA editing sites with high confidence via a computational pipeline utilizing stringent analysis thresholds. We identified a total of 3,447 editing sites that overlapped in three human lung samples, and with 50% of these sites having canonical A-to-G base changes. Approximately 27% of the edited sites overlapped with Alu repeats, and showed A-to-G clustering (>3 clusters in 100 bp). The majority of edited sites mapped to either 3' untranslated regions (UTRs) or introns close to splice sites; whereas, only few sites were in exons resulting in non-synonymous amino acid changes. Interestingly, we identified 652 A-to-G editing events in the 3' UTR of 205 target genes that mapped to 932 potential miRNA target binding sites. Several of these miRNA edited sites were validated in silico. Additionally, we validated several A-to-G edited sites by Sanger sequencing. Altogether, our study suggests a role for RNA editing in miRNA-mediated gene regulation and splicing in human lungs. In this study, we have generated a RNA editome of human lung tissue that can be compared with other RNA editomes across different lung tissues to delineate a role for RNA editing in normal and diseased states.


Assuntos
DNA/análise , Pneumopatias/diagnóstico , Pulmão/fisiologia , MicroRNAs/genética , RNA/análise , Regiões 3' não Traduzidas/genética , Adenina , Adenosina Desaminase/metabolismo , Elementos Alu/genética , Biologia Computacional , Guanosina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pneumopatias/genética , Edição de RNA , Transcriptoma
15.
PLoS One ; 10(8): e0136755, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26317859

RESUMO

BACKGROUND: Inflammation is a key hallmark of ALI and is mediated through ungoverned cytokine signaling. One such cytokine, interleukin-1beta (IL-1ß) has been demonstrated to be the most bioactive cytokine in ALI patients. Macrophages are the key players responsible for IL-1ß secretion into the alveolar space. Following the binding of IL-1ß to its receptor, "activated" alveolar epithelial cells show enhanced barrier dysfunction, adhesion molecule expression, cytokine secretion, and leukocyte attachment. More importantly, it is an important communication molecule between the macrophage and alveolar epithelium. While the molecular determinants of this inflammatory event have been well documented, endogenous resolution processes that decrease IL-1ß secretion and resolve alveolar epithelial cell activation and tissue inflammation have not been well characterized. Lipid mediator Aspirin-Triggered Resolvin D1 (AT-RvD1) has demonstrated potent pro-resolutionary effects in vivo models of lung injury; however, the contribution of the alveoli to the protective benefits of this molecule has not been well documented. In this study, we demonstrate that AT-RvD1 treatment lead to a significant decrease in oxidant induced macrophage IL-1ß secretion and production, IL-1ß-mediated cytokine secretion, adhesion molecule expression, leukocyte adhesion and inflammatory signaling. METHODS: THP-1 macrophages were treated with hydrogen peroxide and extracellular ATP in the presence or absence of AT-RvD1 (1000-0.1 nM). A549 alveolar-like epithelial cells were treated with IL-1ß (10 ng/mL) in the presence or absence of AT-RvD1 (0.1 µM). Following treatment, cell lysate and cell culture supernatants were collected for Western blot, qPCR and ELISA analysis of pro-inflammatory molecules. Functional consequences of IL-1ß induced alveolar epithelial cell and macrophage activation were also measured following treatment with IL-1ß ± AT-RvD1. RESULTS: Results demonstrate that macrophages exposed to H2O2 and ATP in the presence of resolvins show decreased IL-1ß production and activity. A549 cells treated with IL-1ß in the presence of AT-RvD1 show a reduced level of proinflammatory cytokines IL-6 and IL-8. Further, IL-1ß-mediated adhesion molecule expression was also reduced with AT-RvD1 treatment, which was correlated with decreased leukocyte adhesion. AT-RvD1 treatment demonstrated reduced MAP-Kinase signaling. Taken together, our results demonstrate AT-RvD1 treatment reduced IL-1ß-mediated alveolar epithelial cell activation. This is a key step in unraveling the protective effects of resolvins, especially AT-RvD1, during injury.


Assuntos
Lesão Pulmonar Aguda/metabolismo , Ácidos Docosa-Hexaenoicos/farmacologia , Células Epiteliais/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Lesão Pulmonar Aguda/patologia , Linhagem Celular Tumoral , Células Epiteliais/patologia , Humanos , Macrófagos/patologia , Alvéolos Pulmonares , Transdução de Sinais/efeitos dos fármacos
16.
Cell Immunol ; 297(1): 40-5, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26123077

RESUMO

Incomplete clearance of apoptotic cells and reactive oxygen species (ROS) release are known to trigger inflammasome activation causing severe inflammation in acute lung injury and various metabolic and autoimmune diseases. Moreover, it has been reported that apoptotic cell clearance and ROS-mediated apoptosis critically depend on mitochondrial uncoupling protein-2 (UCP2). However, the relationship between UCP2 and inflammasome activation has not been studied. This report investigates the role of UCP2 in the expression and activation of NACHT, LRR and PYD domains-containing protein 3 (NLRP3) inflammasome in human macrophages. We found that UCP2 overexpression significantly enhanced the expression levels of NLRP3. The NLRP3 expression levels were significantly suppressed in THP1 cells treated with genipin, a UCP2 inhibitor, compared to controls. In addition, genipin altered adenosine triphosphate (ATP)- and hydrogen peroxide (H2O2)-mediated interleukin-1 beta (IL-1ß) secretion and significantly suppressed caspase-1 activity in inflammasome-activated human macrophages. Taken together, our results suggest that genipin modulates NLRP3 inflammasome activation and ATP- or H2O2-mediated IL-1ß release.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Inflamassomos/efeitos dos fármacos , Canais Iônicos/imunologia , Iridoides/farmacologia , Proteínas Mitocondriais/imunologia , Apoptose/imunologia , Proteínas de Transporte/biossíntese , Proteínas de Transporte/metabolismo , Caspase 1/imunologia , Células Cultivadas , Ativação Enzimática/imunologia , Regulação da Expressão Gênica , Humanos , Inflamassomos/metabolismo , Inflamação/imunologia , Interleucina-1beta/imunologia , Canais Iônicos/antagonistas & inibidores , Canais Iônicos/biossíntese , Macrófagos/imunologia , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio/imunologia , Proteína Desacopladora 2
17.
Cell Physiol Biochem ; 36(5): 2012-24, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26202361

RESUMO

BACKGROUND: Neuregulin (NRG)-1-human epidermal receptor (HER)-2 signaling pathway is a key regulator of IL-1ß-mediated pulmonary inflammation and epithelial permeability. The inflammasome is a newly discovered molecular platform required for caspase-1 activation and maturation of IL-1ß. However, the role of the inflammasome in NRG-1-HER2 signaling-mediated alveolar cell permeability is unknown. METHODS: The inflammasome was activated or inhibited in THP-1 cells; supernatants from these cells were added to A549 cells and human small airway epithelial cells (HSAEC). The protein expression of NRG-1 and phospho-HER2 (pHER2) were measured by Western blot analysis and epithelial permeability was measured using Lucifer yellow dye. RESULTS: Results reveal that alveolar permeability in A549 cells and HSAEC is increased when treated with supernatants of inflammasome-activated THP-1 cells. Alveolar permeability is significantly suppressed when treated with supernatant of inflammasome-inhibited THP-1 cells. Inflammasome-mediated permeability is decreased when A549 cells and HSAEC are pretreated with IL-1ß receptor antagonist (IL-1ßRA). In addition, HER2 kinase inhibitor AG825 or NRG-1 inhibitor TAPI inhibits inflammasome-mediated permeability in A549 cells and HSAEC demonstrating critical roles of IL-1ß, NRG-1, and HER2 in inflammasome-mediated alveolar permeability. CONCLUSION: These findings suggest that inflammasome-induced alveolar cell permeability is mediated by NRG-1/HER2 signaling through IL-1ß regulation.


Assuntos
Inflamassomos , Neuregulina-1/metabolismo , Linhagem Celular Tumoral , Genes erbB-2 , Humanos , Interleucina-1beta/metabolismo , Alvéolos Pulmonares
18.
Am J Respir Cell Mol Biol ; 53(3): 422-35, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25647402

RESUMO

Acute lung injury (ALI), which presents as acute respiratory failure, is a major clinical problem that requires aggressive care, and patients who require prolonged oxygen exposure are at risk of developing this disease. Although molecular determinants of ALI have been reported, the molecules involved in disease catabasis associated with oxygen toxicity have not been well studied. It has been reported that lung mucosa is rich in omega-3 fatty acid dicosahexanoic acid (DHA), which has antiinflammatory properties. Aspirin-triggered resolvin D1 (AT-RvD1) is a potent proresolution metabolite of DHA that can curb the inflammatory effects in various acute injuries, yet the effect of AT-RvD1 on hyperoxic acute lung injury (HALI) or in the oxygen toxicity setting in general has not been investigated. The effects of AT-RvD1 on HALI were determined for the first time in 8- to 10-week-old C57BL/6 mice that were exposed to hyperoxia (≥95% O2) for 48 hours. Mice were given AT-RvD1 (100 ng) in saline or a saline vehicle for 24 hours in normoxic (≈21% O2) conditions after hyperoxia. Lung tissue and bronchoalveolar lavage (BAL) fluid were collected for analysis associated with proinflammatory signaling and lung inflammation. AT-RvD1 treatment resulted in reduced oxidative stress, increased glutathione production, and significantly decreased tissue inflammation. AT-RvD1 treatment also significantly reduced the lung wet/dry ratio, protein in BAL fluid, and decreased apoptotic and NF-κB signaling. These results show that AT-RvD1 curbs oxygen-induced lung edema, permeability, inflammation, and apoptosis and is thus an effective therapy for prolonged hyperoxia exposure in this murine model.


Assuntos
Lesão Pulmonar Aguda/tratamento farmacológico , Anti-Inflamatórios não Esteroides/farmacologia , Aspirina/farmacologia , Ácidos Docosa-Hexaenoicos/fisiologia , Hiperóxia/tratamento farmacológico , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/metabolismo , Resistência das Vias Respiratórias , Animais , Apoptose , Avaliação Pré-Clínica de Medicamentos , Hiperóxia/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos Endogâmicos C57BL , Infiltração de Neutrófilos , Estresse Oxidativo
19.
Am J Physiol Cell Physiol ; 306(11): C999-C1007, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24696144

RESUMO

Hyperoxic acute lung injury (HALI) is characterized by inflammation and epithelial cell death. CLOCK genes are master regulators of circadian rhythm also implicated in inflammation and lung diseases. However, the relationship of CLOCK genes in hyperoxia-induced lung injury has not been studied. This study will determine if HALI alters CLOCK gene expression. To test this, wild-type and NALP3(-/-) mice were exposed to room air or hyperoxia for 24, 48, or 72 h. In addition, mice were exposed to different concentrations of hyperoxia (50, 75, or 100% O2) or room air for 72 h. The mRNA and protein levels of lung CLOCK genes, based on quantitative PCR and Western blot analysis, respectively, and their target genes are significantly elevated in mice exposed to hyperoxia compared with controls. Alterations in CLOCK genes are associated with increased inflammatory markers in bronchoalveolar lavage fluid of hyperoxic mice compared with controls. Histological examination of mice lungs exposed to hyperoxia show increased inflammation and alveolar congestion compared with controls. Our results indicate sequential increase in CLOCK gene expression in lungs of mice exposed to hyperoxia compared with controls. Additionally, data suggest a dose-dependent increase in CLOCK gene expression with increased oxygen concentrations. To validate if the expression changes related to CLOCK genes are indeed associated with inflammation, NALP3(-/-) was introduced to analyze loss of function in inflammation. Western blot analysis showed significant CLOCK gene downregulation in NALP3(-/-) mice compared with wild-type controls. Together, our results demonstrate that hyperoxia-mediated lung inflammation is associated with alterations in CLOCK gene expression.


Assuntos
Proteínas CLOCK/biossíntese , Regulação da Expressão Gênica , Hiperóxia/metabolismo , Lesão Pulmonar/metabolismo , Animais , Proteínas CLOCK/genética , Hiperóxia/genética , Hiperóxia/patologia , Lesão Pulmonar/genética , Lesão Pulmonar/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , RNA Mensageiro/biossíntese , RNA Mensageiro/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA