Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Heliyon ; 9(10): e20288, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37767470

RESUMO

Background: The findings of previous studies support the efficacy of cold water immersion (CWI) with carbon dioxide (CO2) in enhancing muscle blood flow and maintaining aerobic performance efficiency. We hypothesize that the addition of hydrogen gas (H2), known for its antioxidant properties and role in inflammation regulation, to C-CWI can enhance recovery after eccentric exercise. Subjects: and Methods: Thirty-four healthy subjects performed a knee-extensor eccentric exercise. They were randomly allocated into four groups: control, CWI, CO2-rich CWI (C-CWI), and CO2 + H2 gas mixture CWI (CH-CWI). In the three CWI groups, all subjects were immersed in the appropriate bath at 20 °C for 20 min immediately after 60 repetitions of eccentric exercise. Before exercise and after 48 h of recovery, the subjects' maximal voluntary isometric contraction torque (MVC-ISO), maximal voluntary concentric (MVC-CON) contraction torque, countermovement jump (CMJ) height, knee flexion range of motion (ROM), muscle soreness, and muscle thickness were measured. Results: In the CH-CWI group only, the MVC-ISO, CMJ height, and ROM did not decrease significantly post-exercise, whereas all of these decreased in the other three groups. Muscle soreness at palpation, contraction, and stretching significantly increased post-exercise in all groups. Echo intensity and tissue hardness did not increase significantly in the CH-CWI group. Conclusions: CH-CWI stimulated recovery from impairments in MVC-ISO torque, CMJ height, knee-flexion ROM, tissue hardness, and echo intensity. These findings indicate that CH-CWI can promote recovery after eccentric exercise.

2.
Sci Rep ; 13(1): 15534, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37726511

RESUMO

The use of body weight support (BWS) can reveal important insights into the relationship between lower-limb muscle activities and the ventilatory response during sinusoidal walking. Here, healthy participants (n = 15) walked on a treadmill while 0%, 30%, and 50% of their body weight was supported with BWS. The walking speed was varied sinusoidally between 3 and 6 km h-1, and three different frequencies, and periods ranging from 2 to 10 min were used. Breath-by-breath ventilation ([Formula: see text]) and CO2 output ([Formula: see text]) were measured. The tibialis anterior (TA) muscle activity was measured by electromyography throughout the walking. The amplitude (Amp), normalized Amp [Amp ratio (%)], and phase shift (PS) of the sinusoidal variations in measurement variables were calculated using a Fourier analysis. The results revealed that the Amp ratio in [Formula: see text] increased with the increase in BWS. A steeper slope of the [Formula: see text]-[Formula: see text] relationship and greater [Formula: see text]/[Formula: see text] values were observed under reduced body weight conditions. The Amp ratio in TA muscle was significantly positively associated with the Amp ratio in the [Formula: see text] (p < 0.001). These findings indicate that the greater amplitude in the TA muscle under BWS may have been a potent stimulus for the greater response of ventilation during sinusoidal walking.


Assuntos
Líquidos Corporais , Caminhada , Humanos , Eletromiografia , Músculos , Peso Corporal
3.
J Exerc Sci Fit ; 21(3): 268-274, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37250065

RESUMO

Background/objective: In our previous laboratory experiment (room temperature of 25 °C), CO2-rich cool-water immersion (CCWI) suppressed subjects' core body temperature even during repeated exercise. It is unclear whether the suppression of body temperature elevation would also continue after CCWI in a hot outdoor environment. Herein we investigated the thermal effects of CCWI after regular exercise training in heat on subjects' core temperature (Tcore), three skin temperatures (Tskin), heart rate (HR), and the rate of perceived ice (RPI). Methods: Thirty-six subjects (25 males, 11 females) were randomly allocated into three groups (CCWI, CWI, and control). After training at their competitive clubs, each subject was immersed up to the chest in CCWI or CWI at 20 °C for 20 min, followed by a 60-min recovery period. Tcore, Tskin, HR, and RPI were measured at the initial rest, the end of immersion, and every 10 min during the recovery period. Results: Compared to the control, the CCWI subjects' Tcore was significantly lower at 50-60 min after the end of immersion (p < 0.05). Tskin at abdominal and lower-leg regions during the recovery period was maintained at significantly lower values in the CWI and CCWI groups versus control (p < 0.05). The CCWI subjects maintained lower Tskin for a longer time than the CWI subjects. Conclusions: These findings indicate that CCWI suppresses the rise in body temperatures more than CWI, even in a hot environment, suggesting that CCWI may be a more effective countermeasure against increasing body temperature in a hot outdoor environment.

4.
Nutrients ; 15(2)2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36678258

RESUMO

Previous studies have shown tart cherry (TC) to improve exercise performance in normoxia. The effect of TC on hypoxic exercise performance is unknown. This study investigated the effects of 5 days of tart cherry (TC) or placebo (PL) supplementation on hypoxic exercise performance. Thirteen healthy participants completed an incremental cycle exercise test to exhaustion (TTE) under two conditions: (i) hypoxia (13% O2) with PL and (ii) hypoxia with TC (200 mg anthocyanin per day for 4 days and 100 mg on day 5). Pulmonary gas exchange variables, peripheral arterial oxygen saturation (SpO2), deoxygenated hemoglobin (HHb), and tissue oxygen saturation (StO2) assessed by near-infrared spectroscopy in the vastus lateralis muscle were measured at rest and during exercise. Urinary 8-hydro-2' deoxyguanosine (8-OHdG) excretion was evaluated pre-exercise and 1 and 5 h post-exercise. The TTE after TC (940 ± 84 s, mean ± standard deviation) was longer than after PL (912 ± 63 s, p < 0.05). During submaximal hypoxic exercise, HHb was lower and StO2 and SpO2 were higher after TC than PL. Moreover, a significant interaction (supplements × time) in urinary 8-OHdG excretion was found (p < 0.05), whereby 1 h post-exercise increases in urinary 8-OHdG excretion tended to be attenuated after TC. These findings indicate that short-term dietary TC supplementation improved hypoxic exercise tolerance, perhaps due to lower HHb and higher StO2 in the working muscles during submaximal exercise.


Assuntos
Prunus avium , Humanos , Suplementos Nutricionais , Exercício Físico/fisiologia , Teste de Esforço , Hipóxia/metabolismo , Músculo Esquelético/metabolismo , Oxigênio/metabolismo , Consumo de Oxigênio/fisiologia , Músculo Quadríceps/metabolismo
5.
Nutrients ; 15(1)2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36615878

RESUMO

High-intensity exercise in athletes results in mainly the production of excess reactive oxygen species (ROS) in skeletal muscle, and thus athletes should maintain greater ROS scavenging activity in the body. We investigated the changes in six different ROS-scavenging activities in athletes following high-intensity anaerobic exercise. A 30-s Wingate exercise test as a form of high-intensity anaerobic exercise was completed by 10 male university track and field team members. Blood samples were collected before and after the exercise, and the ROS-scavenging activities (OH•, O2•−, 1O2, RO• and ROO•, and CH3•) were evaluated by the electron spin resonance (ESR) spin-trapping method. The anaerobic exercise significantly increased RO• and ROO• scavenging activities, and the total area of the radar chart in the ROS-scavenging activities increased 178% from that in pre-exercise. A significant correlation between the mean power of the anaerobic exercise and the 1O2 scavenging activity was revealed (r = 0.72, p < 0.05). The increase ratio in OH• scavenging activity after high-intensity exercise was significantly greater in the higher mean-power group compared to the lower mean-power group (n = 5, each). These results suggest that (i) the scavenging activities of some ROS are increased immediately after high-intensity anaerobic exercise, and (ii) an individual's OH• scavenging activity responsiveness may be related to his anaerobic exercise performance. In addition, greater pre-exercise 1O2 scavenging activity might lead to the generation of higher mean power in high-intensity anaerobic exercise.


Assuntos
Atletas , Exercício Físico , Humanos , Masculino , Espécies Reativas de Oxigênio , Anaerobiose , Radicais Livres , Oxigênio , Teste de Esforço
6.
Nutrients ; 14(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36235628

RESUMO

This research examined the effects of single-dose molecular hydrogen (H2) supplements on acid-base status and local muscle deoxygenation during rest, high-intensity intermittent training (HIIT) performance, and recovery. Ten healthy, trained subjects in a randomized, double-blind, crossover design received H2-rich calcium powder (HCP) (1500 mg, containing 2.544 µg of H2) or H2-depleted placebo (1500 mg) supplements 1 h pre-exercise. They performed six bouts of 7 s all-out pedaling (HIIT) at 7.5% of body weight separated by 40 s pedaling intervals, followed by a recovery period. Blood gases' pH, PCO2, and HCO3- concentrations were measured at rest. Muscle deoxygenation (deoxy[Hb + Mb]) and tissue O2 saturation (StO2) were determined via time-resolved near-infrared spectroscopy in the vastus lateralis (VL) and rectus femoris (RF) muscles from rest to recovery. At rest, the HCP group had significantly higher PCO2 and HCO3- concentrations and a slight tendency toward acidosis. During exercise, the first HIIT bout's peak power was significantly higher in HCP (839 ± 112 W) vs. Placebo (816 ± 108 W, p = 0.001), and HCP had a notable effect on significantly increased deoxy[Hb + Mb] concentration during HIIT exercise, despite no differences in heart rate response. The HCP group showed significantly greater O2 extraction in VL and microvascular (Hb) volume in RF during HIIT exercise. The HIIT exercise provided significantly improved blood flow and muscle reoxygenation rates in both the RF and VL during passive recovery compared to rest in all groups. The HCP supplement might exert ergogenic effects on high-intensity exercise and prove advantageous for improving anaerobic HIIT exercise performance.


Assuntos
Treinamento Intervalado de Alta Intensidade , Substâncias para Melhoria do Desempenho , Cálcio/metabolismo , Gases/metabolismo , Humanos , Hidrogênio/metabolismo , Músculo Esquelético/metabolismo , Consumo de Oxigênio/fisiologia , Substâncias para Melhoria do Desempenho/metabolismo , Pós
7.
J Physiol Anthropol ; 41(1): 36, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36280884

RESUMO

BACKGROUND: Several factors have been shown to contribute to hypoxic-induced declined in aerobic capacity. In the present study, we investigated the effects of resting hypoxic ventilatory and cardiac responses (HVR and HCR) on hypoxic-induced declines in peak oxygen uptake ([Formula: see text]O2peak). METHODS: Peak oxygen uptakes was measured in normobaric normoxia (room air) and hypoxia (14.1% O2) for 10 young healthy men. The resting HVR and HCR were evaluated at multiple steps of hypoxia (1 h at each of 21, 18, 15 and 12% O2). Arterial desaturation (ΔSaO2) was calculate by the difference between SaO2 at normoxia-at each level of hypoxia (%). HVR was calculate by differences in pulmonary ventilation between normoxia and each level of hypoxia against ΔSaO2 (L min-1 %-1 kg-1). Similarly, HCR was calculated by differences in heart rate between normoxia and each level of hypoxia against ΔSaO2 (beats min-1 %-1). RESULTS: [Formula: see text]O2peak significantly decreased in hypoxia by 21% on average (P < 0.001). HVR was not associated with changes in [Formula: see text]O2peak. ΔSaO2 from normoxia to 18% or 15% O2 and HCR between normoxia and 12% O2 were associated with changes in [Formula: see text]O2peak (P < 0.05, respectively). The most optimal model using multiple linear regression analysis found that ΔHCR at 12% O2 and ΔSaO2 at 15% O2 were explanatory variables (adjusted R2 = 0.580, P = 0.02). CONCLUSION: These results suggest that arterial desaturation at moderate hypoxia and heart rate responses at severe hypoxia may account for hypoxic-induced declines in peak aerobic capacity, but ventilatory responses may be unrelated.


Assuntos
Hipóxia , Consumo de Oxigênio , Masculino , Humanos , Consumo de Oxigênio/fisiologia , Ventilação Pulmonar , Frequência Cardíaca , Oxigênio
8.
Front Physiol ; 13: 820666, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35492612

RESUMO

We tested the hypothesis that restricting either step frequency (SF) or stride length (SL) causes a decrease in ventilatory response with limited breath frequency during sinusoidal walking. In this study, 13 healthy male and female volunteers (mean ± SD; age: 21.5 ± 1.8 years, height: 168 ± 7 cm, weight: 61.5 ± 8.3 kg) participated. The walking speed was sinusoidally changed between 50 and 100 m⋅min-1 with periods from 10 to 1 min. Using a customized sound system, we fixed the SF at 120 steps⋅min-1 with SL variation (0.83-0.41 m) (SF fix ) or fixed the SL at 0.7 m with SF variation (143-71 steps⋅min-1) (SL fix ) during the subjects' sinusoidal walking. Both the subjects' preferred locomotion pattern without a sound system (Free) and the unprompted spontaneous locomotor pattern for each subject (Free) served as the control condition. We measured breath-by-breath ventilation [tidal volume (VT) and breathing frequency (Bf)] and gas exchange [CO2 output ( V . CO2), O2 uptake ( V . O2)]. The amplitude (Amp) and the phase shift (PS) of the fundamental component of the ventilatory and gas exchange variables were calculated. The results revealed that the SF fix condition decreased the Amp of the Bf response compared with SL fix and Free conditions. Notably, the Amp of the Bf response under SF fix was reduced by less than one breath at the periods of 5 and 10 min. In contrast, the SL fix condition resulted in larger Amps of Bf and V . E responses as well as Free. We thus speculate that the steeper slope of the V . E - V . CO2 relationship observed under the SL fix might be attributable to the central feed-forward command or upward information from afferent neural activity by sinusoidal locomotive cadence. The PSs of the V . E , V . O2, and V . CO2 responses were unaffected by any locomotion patterns. Such a sinusoidal wave manipulation of locomotion variables may offer new insights into the dynamics of exercise hyperpnea.

9.
J Exerc Sci Fit ; 20(2): 148-154, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35356104

RESUMO

Background Objective: We investigated the effects of a 3-day consecutive CO2-rich cold (20 °C) water immersion (CCWI) following a high-intensity intermittent test (HIIT) on subjects' sublingual temperature (Tsub), blood lactate ([La]b), and heart rate (HR) compared to cold (20 °C) tap-water immersion (CWI) or passive recovery (PAS). Methods: Thirty-two subjects were randomly allocated into three groups (CCWI, CWI, and PAS), each of which completed 4 consecutive days of cycling experiments. HR, Tsub, and [La]b were recorded on each day of exercise testing (immersion from Day 1 to Day 3 and Day 4). HIIT consisted of 8 sets of 20-sec maximum exercise at an intensity of 120% of VO2max with 10-sec passive rest. The mean and peak power, and peak pedal repetitions (PPR) within HIIT were averaged and the decline in PPR (ΔPPR) from Day 1 to Day 4 was measured. Results: In CCWI and CWI, HR declined significantly following each immersion, with CCWI showing the larger reduction (p < 0.001). At Day 2, CCWI showed a significantly lower [La]b compared to PAS (p < 0.01). The changes in mean and peak power from Day 1 to Day 4 did not differ among the groups (p = 0.302). ΔPPR of HIIT was significantly correlated with the HR and [La]b values after immersions (ΔPPR-HR: r2 = 0.938, p < 0.001, ΔPPR-[La]b: r2 = 0.999, p < 0.001). Conclusions: These findings indicate that CCWI is a promising intervention for maintaining peak performance in high-intensity intermittent exercise, which is associated with a reduction in [La]b and HR.

10.
Res Sports Med ; 30(2): 215-227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33300394

RESUMO

We investigated the acute effects of cold-water immersion (20°C) with higher CO2 concentration (CCWI) following a high-intensity Wingate anaerobic exercise test (WAnT) on subjects' sublingual temperature (Tsub), blood lactate ([La]b), heart rate (HR), and aerobic cycling work efficiency (WE) compared to cold tap-water immersion (20°C; CWI) and passive recovery (PAS). Fifteen subjects completed three testing sessions at 1-week intervals. Each trial consisted of a first WE and WAnT, and a 20-min recovery intervention (randomized: CCWI, CWI, and PAS) before repeating a second WE and WAnT. The WE was measured by the metabolic demand during 50% V.O2max exercise. HR, Tsub, and [La]b were recorded throughout the testing sessions. There was a significant decline in the WE from 1st bout to 2nd bout at each recovery intervention. The WAnT was also significantly reduced at 2nd bout. Significantly reduced [La]b was achieved at CCWI compared to PAS, but not to the CWI. Likewise, the reduction in HR following immersion was the largest at CCWI compared to the other conditions. These findings indicate that CCWI is an effective intervention for maintaining repeated cycling work efficiency, which might be associated with reduced [La]b and HR.


Assuntos
Desempenho Atlético , Dióxido de Carbono , Temperatura Baixa , Humanos , Imersão , Recuperação de Função Fisiológica , Água
11.
Nutrients ; 13(2)2021 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-33573133

RESUMO

We investigated effects of molecular hydrogen (H2) supplementation on acid-base status, pulmonary gas exchange responses, and local muscle oxygenation during incremental exercise. Eighteen healthy, trained subjects in a randomized, double-blind, crossover design received H2-rich calcium powder (HCP) (1500 mg/day, containing 2.544 µg/day of H2) or H2-depleted placebo (1500 mg/day) for three consecutive days. They performed cycling incremental exercise starting at 20-watt work rate, increasing by 20 watts/2 min until exhaustion. Breath-by-breath pulmonary ventilation (V˙E) and CO2 output (V˙CO2) were measured and muscle deoxygenation (deoxy[Hb + Mb]) was determined via time-resolved near-infrared spectroscopy in the vastus lateralis (VL) and rectus femoris (RF). Blood gases' pH, lactate, and bicarbonate (HCO3-) concentrations were measured at rest and 120-, 200-, and 240-watt work rates. At rest, the HCP group had significantly lower V˙E, V˙CO2, and higher HCO3-, partial pressures of CO2 (PCO2) versus placebo. During exercise, a significant pH decrease and greater HCO3- continued until 240-watt workload in HCP. The V˙E was significantly lower in HCP versus placebo, but HCP did not affect the gas exchange status of V˙CO2 or oxygen uptake (V˙O2). HCP increased absolute values of deoxy[Hb + Mb] at the RF but not VL. Thus, HCP-induced hypoventilation would lead to lower pH and secondarily impaired balance between O2 delivery and utilization in the local RF during exercise, suggesting that HCP supplementation, which increases the at-rest antioxidant potential, affects the lower ventilation and pH status during incremental exercise. HPC induced a significantly lower O2 delivery/utilization ratio in the RF but not the VL, which may be because these regions possess inherently different vascular/metabolic control properties, perhaps related to fiber-type composition.


Assuntos
Antioxidantes/uso terapêutico , Exercício Físico/fisiologia , Hidrogênio/uso terapêutico , Administração Oral , Antioxidantes/administração & dosagem , Bicarbonatos/sangue , Gasometria , Testes Respiratórios , Dióxido de Carbono/análise , Estudos Cross-Over , Método Duplo-Cego , Humanos , Hidrogênio/administração & dosagem , Masculino , Músculo Esquelético/química , Oxigênio/análise , Pressão Parcial , Pós , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
12.
Eur J Appl Physiol ; 121(5): 1283-1296, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33575912

RESUMO

PURPOSE: We tested the hypothesis that incremental ramp cycling exercise performed in the supine position (S) would be associated with an increased reliance on muscle deoxygenation (deoxy[heme]) in the deep and superficial vastus lateralis (VLd and VLs, respectively) and the superficial rectus femoris (RFs) when compared to the upright position (U). METHODS: 11 healthy men completed ramp incremental exercise tests in S and U. Pulmonary [Formula: see text]O2 was measured breath-by-breath; deoxy[heme] was determined via time-resolved near-infrared spectroscopy in the VLd, VLs and RFs. RESULTS: Supine exercise increased the overall change in deoxy[heme] from baseline to maximal exercise in the VLs (S: 38 ± 23 vs. U: 26 ± 15 µM, P < 0.001) and RFs (S: 36 ± 21 vs. U: 25 ± 15 µM, P < 0.001), but not in the VLd (S: 32 ± 23 vs. U: 29 ± 26 µM, P > 0.05). CONCLUSIONS: The present study supports that the impaired balance between O2 delivery and O2 utilization observed during supine exercise is a regional phenomenon within superficial muscles. Thus, deep muscle defended its O2 delivery/utilization balance against the supine-induced reductions in perfusion pressure. The differential responses of these muscle regions may be explained by a regional heterogeneity of vascular and metabolic control properties, perhaps related to fiber type composition.


Assuntos
Exercício Físico/fisiologia , Oxigênio/metabolismo , Músculo Quadríceps/metabolismo , Posição Ortostática , Decúbito Dorsal , Ciclismo/fisiologia , Voluntários Saudáveis , Humanos , Masculino , Espectroscopia de Luz Próxima ao Infravermelho , Adulto Jovem
13.
PeerJ ; 8: e9785, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32884861

RESUMO

BACKGROUND: Cold therapy has the disadvantage of inducing vasoconstriction in arterial and venous capillaries. The effects of carbon dioxide (CO2) hot water depend mainly on not only cutaneous vasodilation but also muscle vasodilation. We examined the effects of artificial CO2 cold water immersion (CCWI) on skin oxygenation and muscle oxygenation and the immersed skin temperature. SUBJECTS AND METHODS: Fifteen healthy young males participated. CO2-rich water containing CO2 >1,150 ppm was prepared using a micro-bubble device. Each subject's single leg was immersed up to the knee in the CO2-rich water (20 °C) for 15 min, followed by a 20-min recovery period. As a control study, a leg of the subject was immersed in cold tap-water at 20 °C (CWI). The skin temperature at the lower leg under water immersion (Tsk-WI) and the subject's thermal sensation at the immersed and non-immersed lower legs were measured throughout the experiment. We simultaneously measured the relative changes of local muscle oxygenation/deoxygenation compared to the basal values (Δoxy[Hb+Mb], Δdeoxy[Hb+Mb], and Δtotal[Hb+Mb]) at rest, which reflected the blood flow in the muscle, and we measured the tissue O2 saturation (StO2) by near-infrared spectroscopy on two regions of the tibialis anterior (TA) and gastrocnemius (GAS) muscles. RESULTS: Compared to the CWI results, the Δoxy[Hb+Mb] and Δtotal[Hb+Mb] in the TA muscle at CCWI were increased and continued at a steady state during the recovery period. In GAS muscle, the Δtotal[Hb+Mb] and Δdeoxy[Hb+Mb] were increased during CCWI compared to CWI. Notably, StO2values in both TA and GAS muscles were significantly increased during CCWI compared to CWI. In addition, compared to the CWI, a significant decrease in Tsk at the immersed leg after the CCWI was maintained until the end of the 20-min recovery, and the significant reduction continued. DISCUSSION: The combination of CO2 and cold water can induce both more increased blood inflow into muscles and volume-related (total heme concentration) changes in deoxy[Hb+Mb] during the recovery period. The Tsk-WI stayed lower with the CCWI compared to the CWI, as it is associated with vasodilation by CO2.

14.
J Physiol Anthropol ; 39(1): 8, 2020 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-32248824

RESUMO

BACKGROUND: Ground golf is a popular sport among the elderly in Japan. Several types of exercise can reduce the body's mean arterial pressure (MAP), but little is known about how ground golf affects the MAP. We investigated the effects of ground golf on the MAP and the oxygen uptake ([Formula: see text]) in a healthy elderly population. PARTICIPANTS AND METHODS: Thirteen elderly Japanese people (3 males and 10 females, mean age of 66 years) participated. All participants played 8 holes of ground golf 6 times, as game (G)1 to G6. The MAP, heart rate (HR), and [Formula: see text] were measured at rest and every 5 min during each game. RESULTS: A linear trend analysis revealed that participants' MAP values progressively decreased as each game proceeded with marginal differences (p = 0.054). There were no significant differences in HR between at rest and any of the games. The [Formula: see text] during the games (except for G6) were significantly higher than that at-rest (p < 0.05). The resting MAP values were negatively associated with the ground golf-induced changes in MAP (r = 0.786, p = 0.001). The participants with greater changes in [Formula: see text] during the games showed significantly greater reductions in MAP (r = 0.276, p = 0.043). CONCLUSIONS: Playing ground golf reduced the participants' MAP and increased their [Formula: see text]. Participants with higher resting MAP experienced greater reductions in MAP by playing ground golf, which suggests that ground golf can be a useful recreational sport for the elderly.


Assuntos
Pressão Arterial , Golfe , Consumo de Oxigênio , Idoso , Exercício Físico , Feminino , Humanos , Japão , Masculino , Pessoa de Meia-Idade
15.
PeerJ ; 7: e8290, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31871846

RESUMO

BACKGROUND: Minimization of the energetic cost of transport (CoT) has been suggested for the walk-run transition in human locomotion. More recent literature argues that lower leg muscle activities are the potential triggers of the walk-run transition. We examined both metabolic and muscular aspects for explaining walk-run transition under body weight support (BWS; supported 30% of body weight) and normal walking (NW), because the BWS can reduce both leg muscle activity and metabolic rate. METHODS: Thirteen healthy young males participated in this study. The energetically optimal transition speed (EOTS) was determined as the intersection between linear CoT and speed relationship in running and quadratic CoT-speed relationship in walking under BWS and NW conditions. Preferred transition speed (PTS) was determined during constant acceleration protocol (velocity ramp protocol at 0.00463 m·s-2 = 1 km·h-1 per min) starting from 1.11 m·s-1. Muscle activities and mean power frequency (MPF) were measured using electromyography of the primary ankle dorsiflexor (tibialis anterior; TA) and synergetic plantar flexors (calf muscles including soleus) before and after the walk-run transition. RESULTS: The EOTS was significantly faster than the PTS under both conditions, and both were faster under BWS than in NW. In both conditions, MPF decreased after the walk-run transition in the dorsiflexor and the combined plantar flexor activities, especially the soleus. DISCUSSION: The walk-run transition is not triggered solely by the minimization of whole-body energy expenditure. Walk-run transition is associated with reduced TA and soleus activities with evidence of greater slow twitch fiber recruitment, perhaps to avoid early onset of localized muscle fatigue.

16.
Sci Rep ; 9(1): 9550, 2019 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-31266961

RESUMO

Energy expenditure (EE) during treadmill walking under normal conditions (normobaric normoxia, 21% O2) and moderate hypoxia (13% O2) was measured. Ten healthy young men and ten healthy young women walked on a level (0°) gradient a range of speeds (0.67-1.67 m s-1). During walking, there were no significant differences in reductions in arterial oxygen saturation (SpO2) between the sexes. The hypoxia-induced increase in EE, heart rate (HR [bpm]) and ventilation ([Formula: see text] [L min-1]) were calculated. Using a multivariate model that combined EE, [Formula: see text], and HR to predict ΔSpO2 (hypoxia-induced reduction), a very strong fit model both for men (r2 = 0.900, P < 0.001) and for women was obtained (r2 = 0.957, P < 0.001). The contributions of EE, VE, and HR to ΔSpO2 were markedly different between men and women. [Formula: see text] and EE had a stronger effect on ΔSpO2 in women ([Formula: see text]: 4.1% in women vs. 1.7% in men; EE: 28.1% in women vs. 15.8% in men), while HR had a greater effect in men (82.5% in men and 67.9% in women). These findings suggested that high-altitude adaptation in response to hypoxemia has different underlying mechanisms between men and women. These results can help to explain how to adapt high-altitude for men and women, respectively.


Assuntos
Sistema Cardiovascular/metabolismo , Hipóxia/metabolismo , Consumo de Oxigênio , Sistema Respiratório/metabolismo , Caminhada , Adolescente , Adulto , Biomarcadores , Sistema Cardiovascular/fisiopatologia , Feminino , Humanos , Hipóxia/fisiopatologia , Masculino , Testes de Função Respiratória , Sistema Respiratório/fisiopatologia , Adulto Jovem
17.
Spinal Cord ; 57(11): 942-952, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31164733

RESUMO

STUDY DESIGN: Observational study OBJECTIVE: To investigate the effects of prolonged arm-crank exercise on cardiovascular drift (CVdrift) in spinal cord injury (SCI). SETTING: This is a community-based supervision study METHODS: Ten participants with motor -complete or incomplete SCI (lesion level T7-L1), and 10 able-bodied (AB) participants matched for age performed a 40-min arm-crank exercise at an intensity of 50% of peak oxygen uptake (VO2). RESULTS: During the exercise, there were no significant differences between the groups in VO2, tissue O2 saturation in the biceps brachii (active muscle), and chest and arm skin temperature (all P > 0.05). In the AB, heart rate (HR) increased within the first 15 min of the exercise and continued to increase until the end of the exercise; however, in the SCI, HR increased within first 15 min of the exercise and then remained constant until the end of exercise. After 10 min of exercise, thigh skin temperature had increased more in the SCI than in the AB (P < 0.05). Thigh skin blood flow (SkBF) continued to increase after 10 min of exercise in the AB but remained almost stable in the SCI. Relative changes in the thigh SkBF were associated with changes in HR during exercise between the values at 10 min and 40 min in the pooled data (R2 = 0.706, P < 0.001). CONCLUSIONS: CVdrift during the prolonged arm-crank exercise was not observed in individuals with SCI. This might be partially explained by different responses in cutaneous circulation within the inactive muscles of these participants.


Assuntos
Braço/fisiologia , Teste de Esforço/métodos , Terapia por Exercício/métodos , Frequência Cardíaca/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos da Medula Espinal/reabilitação , Adulto , Velocidade do Fluxo Sanguíneo/fisiologia , Feminino , Humanos , Vértebras Lombares , Masculino , Consumo de Oxigênio/fisiologia , Paraplegia/diagnóstico , Paraplegia/fisiopatologia , Paraplegia/reabilitação , Traumatismos da Medula Espinal/diagnóstico , Vértebras Torácicas , Adulto Jovem
18.
J Sports Sci ; 37(14): 1638-1647, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30774004

RESUMO

We investigated combined effects of ambient temperature (23°C or 13°C) and fraction of inspired oxygen (21%O2 or 13%O2) on energy cost of walking (Cw: J·kg-1·km-1) and economical speed (ES). Eighteen healthy young adults (11 males, seven females) walked at seven speeds from 0.67 to 1.67 m s-1 (four min per stage). Environmental conditions were set; thermoneutral (N: 23°C) with normoxia (N: 21%O2) = NN; 23°C (N) with hypoxia (H: 13%O2) = NH; cool (C: 13°C) with 21%O2 (N) = CN, and 13°C (C) with 13%O2 (H) = CH. Muscle deoxygenation (HHb) and tissue O2 saturation (StO2) were measured at tibialis anterior. We found a significantly slower ES in NH (1.289 ± 0.091 m s-1) and CH (1.275 ± 0.099 m s-1) than in NN (1.334 ± 0.112 m s-1) and CN (1.332 ± 0.104 m s-1). Changes in HHb and StO2 were related to the ES. These results suggested that the combined effects (exposure to hypoxia and cool) is nearly equal to exposure to hypoxia and cool individually. Specifically, acute moderate hypoxia slowed the ES by approx. 4%, but acute cool environment did not affect the ES. Further, HHb and StO2 may partly account for an individual ES.


Assuntos
Temperatura Baixa , Metabolismo Energético , Hipóxia , Músculo Esquelético/metabolismo , Consumo de Oxigênio , Velocidade de Caminhada/fisiologia , Adaptação Fisiológica , Adulto , Teste de Esforço , Feminino , Frequência Cardíaca , Humanos , Masculino , Oxigênio/sangue , Troca Gasosa Pulmonar , Temperatura Cutânea , Adulto Jovem
19.
J Physiol Anthropol ; 38(1): 17, 2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31888750

RESUMO

BACKGROUND: Since walking is a daily activity not to require the maximal effort in healthy populations, a very few universal bio-parameters and/or methods have been defined to evaluate individual walking characteristics in those populations. A concept of "economy" is a potential candidate; however, walking economy highly depends on speed, so direct comparisons of economy values are difficult between studies. We investigated whether the vertical component of net walking "efficiency" (Effvert; %) is constant across speed. In that case, direct comparisons of Effvert will be possible between studies or individuals at any voluntary speed. METHODS: Thirty young male participants walked at eight speeds on the level or ± 5% gradients, providing vertical speeds (vvert). Differences in energy expenditure between level and uphill or downhill gradients (ΔEE) were calculated. The metabolic rate for vertical component (MRvert) was calculated by multiplying ΔEE with body mass (BM). The mechanical power output for vertical component (Pmech) was calculated by multiplying BM, gravitational acceleration, and vvert. Effvert was obtained from the ratio of Pmech to MRvert at each vvert. Delta efficiency (Delta-E; %) was also calculated from the inverse slope of the regression line representing the relationship of Pmech to MRvert. RESULTS: Upward Effvert was nearly constant at around 35% and downward Effvert ranged widely (49-80%). No significant differences were observed between upward Delta-E (35.5 ± 8.8%) and Effvert at any speeds, but not between downward Delta-E (44.9 ± 12.8%) and Effvert. CONCLUSIONS: Upward ΔEE could be proportional to vvert. Upward, but not downward, Effvert should be useful not only for healthy populations but also for clinical patients to evaluate individual gait characteristics, because it requires only two metabolic measurements on the level and uphill gradients without kinematic information at any voluntary speed. TRIAL REGISTRATION: UMIN000017690 (R000020501; registered May 26th, 2015, before the first trial) and UMIN000031456 (R000035911; registered Feb. 23rd, 2018, before the first trial).


Assuntos
Modelos Biológicos , Caminhada/fisiologia , Adolescente , Adulto , Antropologia Física , Metabolismo Energético/fisiologia , Marcha/fisiologia , Humanos , Masculino , Consumo de Oxigênio/fisiologia , Adulto Jovem
20.
J Physiol Anthropol ; 37(1): 22, 2018 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-30268154

RESUMO

BACKGROUND: We investigated cardiovascular responses to an orthostatic challenge in trained spinal cord-injured (SCI) individuals compared to able-bodied (AB) individuals. METHODS: A total of 23 subjects participated, divided into three groups: seven were trained as spinal cord-injured (Tr-SCI) individuals, seven were able-bodied individuals trained as runners (Tr-AB), and nine were untrained able-bodied individuals (UnTr-AB). We measured the cardiovascular autonomic responses in all three groups during each 5-min head-up tilt (HUT) of 0°, 40°, and 80°. Stroke volume (SV), heart rate (HR), and cardiac output (Qc) as cardiovascular responses were measured by impedance cardiography. Changes in deoxyhemoglobin (∆[HHb]) and total hemoglobin (∆[Hbtot]) concentrations of the right medial gastrocnemius muscle were measured using near-infrared spectroscopy (NIRS). RESULTS: As the HUT increased from 0° to 80°, Tr-SCI group showed less change in SV at all HUT levels even if HR increased significantly. Mean arterial pressure (MAP) also did not significantly increase as tilting increased from 0° to 80°. Regarding peripheral vascular responses, the alterations of ∆[Hbtot] from 0° to 80° were less in Tr-SCI group compared to AB individuals. CONCLUSION: There is a specific mechanism whereby blood pressure is maintained during a HUT in Tr-SCI group with the elicitation of peripheral vasoconstriction and the atrophy of the vascular vessels in paraplegic lower limbs, which would be associated with less change in SV in response to an orthostatic challenge.


Assuntos
Hemodinâmica/fisiologia , Traumatismos da Medula Espinal/fisiopatologia , Adulto , Cardiografia de Impedância , Humanos , Masculino , Pessoa de Meia-Idade , Espectroscopia de Luz Próxima ao Infravermelho , Teste da Mesa Inclinada , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA