Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Prog Neurobiol ; 182: 101681, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31412279

RESUMO

Methylphenidate is an established treatment for attention-deficit hyperactivity disorder that also has abuse potential. Both properties may relate to blocking dopamine and norepinephrine reuptake. We measured the effects of methylphenidate on dopamine dynamics in freely moving rats. Methylphenidate alone had no effect on the amplitude of phasic responses to cues or reward. However, when administered with the D2 receptor antagonist raclopride, methylphenidate increased dopamine responses, while raclopride alone had no effect. Using brain slices of substantia nigra or striatum, we confirmed that methylphenidate effects on firing rate of nigral dopamine neurons and dopamine release from terminals are constrained by negative feedback. A computational model using physiologically relevant parameters revealed that actions of methylphenidate on norepinephrine and dopamine transporters, and the effects of changes in tonic dopamine levels on D2 receptors, are necessary and sufficient to account for the experimental findings. In addition, non-linear fitting of the model to the data from freely moving animals revealed that methylphenidate significantly slowed the initial cue response dynamics. These results show that homeostatic regulation of dopamine release in the face of changing tonic levels of extracellular dopamine should be taken into account to understand the therapeutic benefits and abuse potential of methylphenidate.


Assuntos
Comportamento Animal/fisiologia , Dopamina/metabolismo , Homeostase/fisiologia , Metilfenidato/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Masculino , Ratos Wistar , Vigília/fisiologia
2.
Sci Rep ; 8(1): 16277, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-30389979

RESUMO

In Drosophila melanogaster, aversive (electric shock) stimuli have been shown to activate subpopulations of dopaminergic neurons with terminals in the mushroom bodies (MBs) of the brain. While there is compelling evidence that dopamine (DA)-induced synaptic plasticity underpins the formation of aversive memories in insects, the mechanisms involved have yet to be fully resolved. Here we take advantage of the accessibility of MBs in the brain of the honey bee to examine, using fast scan cyclic voltammetry, the kinetics of DA release and reuptake in vivo in response to electric shock, and to investigate factors that modulate the release of this amine. DA increased transiently in the MBs in response to electric shock stimuli. The magnitude of release varied depending on stimulus duration and intensity, and a strong correlation was identified between DA release and the intensity of behavioural responses to shock. With repeated stimulation, peak DA levels increased. However, the amount of DA released on the first stimulation pulse typically exceeded that evoked by subsequent pulses. No signal was detected in response to odour alone. Interestingly, however, if odour presentation was paired with electric shock, DA release was enhanced. These results set the stage for analysing the mechanisms that modulate DA release in the MBs of the bee.


Assuntos
Abelhas/fisiologia , Condicionamento Psicológico/fisiologia , Dopamina/metabolismo , Neurônios Dopaminérgicos/metabolismo , Corpos Pedunculados/metabolismo , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Psicológico/efeitos dos fármacos , Inibidores da Captação de Dopamina/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Eletrodos , Eletrochoque/instrumentação , Eletrochoque/métodos , Masculino , Corpos Pedunculados/citologia , Corpos Pedunculados/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Plasticidade Neuronal/fisiologia , Nomifensina/farmacologia , Odorantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA