Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
2.
J Appl Physiol (1985) ; 135(1): 205-216, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37262105

RESUMO

This study explored the use of computed cardiopulmonography (CCP) to assess lung function in early-stage cystic fibrosis (CF). CCP has two components. The first is a particularly accurate technique for measuring gas exchange. The second is a computational cardiopulmonary model where patient-specific parameters can be estimated from the measurements of gas exchange. Twenty-five participants (14 healthy controls, 11 early-stage CF) were studied with CCP. They were also studied with a standard clinical protocol to measure the lung clearance index (LCI2.5). Ventilation inhomogeneity, as quantified through CCP parameter σlnCl, was significantly greater (P < 0.005) in CF than in controls, and anatomical deadspace relative to predicted functional residual capacity (DS/FRCpred) was significantly more variable (P < 0.002). Participant-specific parameters were used with the CCP model to calculate idealized values for LCI2.5 (iLCI2.5) where extrapulmonary influences on the LCI2.5, such as breathing pattern, had all been standardized. Both LCI2.5 and iLCI2.5 distinguished clearly between CF and control participants. LCI2.5 values were mostly higher than iLCI2.5 values in a manner dependent on the participant's respiratory rate (r = 0.46, P < 0.05). The within-participant reproducibility for iLCI2.5 appeared better than for LCI2.5, but this did not reach statistical significance (F ratio = 2.2, P = 0.056). Both a sensitivity analysis on iLCI2.5 and a regression analysis on LCI2.5 revealed that these depended primarily on an interactive term between CCP parameters of the form σlnCL*(DS/FRC). In conclusion, the LCI2.5 (or iLCI2.5) probably reflects an amalgam of different underlying lung changes in early-stage CF that would require a multiparameter approach, such as potentially CCP, to resolve.NEW & NOTEWORTHY Computed cardiopulmonography is a new technique comprising a highly accurate sensor for measuring respiratory gas exchange coupled with a cardiopulmonary model that is used to identify a set of patient-specific characteristics of the lung. Here, we show that this technique can improve on a standard clinical approach for lung function testing in cystic fibrosis. Most particularly, an approach incorporating multiple model parameters can potentially separate different aspects of pathological change in this disease.


Assuntos
Fibrose Cística , Humanos , Reprodutibilidade dos Testes , Testes de Função Respiratória/métodos , Pulmão , Respiração
3.
Front Physiol ; 13: 1032126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36388110

RESUMO

Early diagnosis and disease phenotyping in COPD are currently limited by the use of spirometry, which may remain normal despite significant small-airways disease and which may not fully capture a patient's underlying pathophysiology. In this study we explored the use of a new non-invasive technique that assesses gas-exchange inhomogeneity in patients with COPD of varying disease severity (according to GOLD Stage), compared with age-matched healthy controls. The technique, which combines highly accurate measurement of respiratory gas exchange using a bespoke molecular flow sensor and a mechanistic mathematical model of the lung, provides new indices of lung function: the parameters σCL, σCd, and σVD represent the standard deviations of distributions for alveolar compliance, anatomical deadspace and vascular conductance relative to lung volume, respectively. It also provides parameter estimates for total anatomical deadspace and functional residual capacity (FRC). We demonstrate that these parameters are robust and sensitive, and that they can distinguish between healthy individuals and those with mild-moderate COPD (stage 1-2), as well as distinguish between mild-moderate COPD (stage 1-2) and more severe (stage 3-4) COPD. In particular, σCL, a measure of unevenness in lung inflation/deflation, could represent a more sensitive non-invasive marker of early or mild COPD. In addition, by providing a multi-dimensional assessment of lung physiology, this technique may also give insight into the underlying pathophysiological phenotype for individual patients. These preliminary results warrant further investigation in larger clinical research studies, including interventional trials.

4.
J Appl Physiol (1985) ; 133(5): 1175-1191, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173325

RESUMO

The longer-term effects of COVID-19 on lung physiology remain poorly understood. Here, a new technique, computed cardiopulmonography (CCP), was used to study two COVID-19 cohorts (MCOVID and C-MORE-LP) at both ∼6 and ∼12 mo after infection. CCP is comprised of two components. The first is collection of highly precise, highly time-resolved measurements of gas exchange with a purpose-built molecular flow sensor based around laser absorption spectroscopy. The second component is estimation of physiological parameters by fitting a cardiopulmonary model to the data set. The measurement protocol involved 7 min of breathing air followed by 5 min of breathing pure O2. One hundred seventy-eight participants were studied, with 97 returning for a repeat assessment. One hundred twenty-six arterial blood gas samples were drawn from MCOVID participants. For participants who had required intensive care and/or invasive mechanical ventilation, there was a significant increase in anatomical dead space of ∼30 mL and a significant increase in alveolar-to-arterial Po2 gradient of ∼0.9 kPa relative to control participants. Those who had been hospitalized had reductions in functional residual capacity of ∼15%. Irrespectively of COVID-19 severity, participants who had had COVID-19 demonstrated a modest increase in ventilation inhomogeneity, broadly equivalent to that associated with 15 yr of aging. This study illustrates the capability of CCP to study aspects of lung function not so easily addressed through standard clinical lung function tests. However, without measurements before infection, it is not possible to conclude whether the findings relate to the effects of COVID-19 or whether they constitute risk factors for more serious disease.NEW & NOTEWORTHY This study used a novel technique, computed cardiopulmonography, to study the lungs of patients who have had COVID-19. Depending on severity of infection, there were increases in anatomical dead space, reductions in absolute lung volumes, and increases in ventilation inhomogeneity broadly equivalent to those associated with 15 yr of aging. However, without measurements taken before infection, it is unclear whether the changes result from COVID-19 infection or are risk factors for more severe disease.


Assuntos
COVID-19 , Humanos , Testes de Função Respiratória , Respiração Artificial , Pulmão , Respiração
5.
J Appl Physiol (1985) ; 130(5): 1383-1397, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33475459

RESUMO

Many models of the body's gas stores have been generated for specific purposes. Here, we seek to produce a more general purpose model that: 1) is relevant for both respiratory (CO2 and O2) and inert gases; 2) is based firmly on anatomy and not arbitrary compartments; 3) can be scaled to individuals; and 4) incorporates arterial and venous circulatory delays as well as tissue volumes so that it can reflect rapid transients with greater precision. First, a "standard man" of 11 compartments was produced, based on data compiled by the International Radiation Protection Commission. Each compartment was supplied via its own parallel circulation, the arterial and venous volumes of which were based on reported tissue blood volumes together with data from a detailed anatomical model for the large arteries and veins. A previously published model was used for the blood gas chemistry of CO2 and O2. It was not permissible ethically to insert pulmonary artery catheters into healthy volunteers for model validation. Therefore, validation was undertaken by comparing model predictions with previously published data and by comparing model predictions with experimental data for transients in gas exchange at the mouth following changes in alveolar gas composition. Overall, model transients were fastest for O2, intermediate for CO2, and slowest for N2. There was good agreement between model estimates and experimentally measured data. Potential applications of the model include estimation of closed-loop gain for the ventilatory chemoreflexes and improving the precision associated with multibreath washout testing and respiratory measurement of cardiac output.NEW & NOTEWORTHY A model for the body gas stores has been generated that is applicable to both respiratory gases (CO2 and O2) and inert gases. It is based on anatomical details for organ volumes and blood contents together with anatomical details of the large arteries. It can be scaled to the body size and composition of different individuals. The model enables mixed venous gas compositions to be predicted from the systemic arterial compositions.


Assuntos
Dióxido de Carbono , Oxigênio , Débito Cardíaco , Humanos , Pulmão , Masculino , Gases Nobres , Troca Gasosa Pulmonar
6.
BMJ Open Respir Res ; 7(1)2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32161066

RESUMO

INTRODUCTION: In asthma, lung function measures are often discordant with clinical features such as disease activity or control. METHODS: We investigated a novel technique that provides a measure (σCL) of unevenness (inhomogeneity) in lung inflation/deflation. In particular, we compared σCL with FEV1% predicted (FEV1%pred) as measures of disease activity in the asthmatic lung. RESULTS: σCL correlated modestly with FEV1%pred. However, σCL is not simply a proxy for FEV1%pred as the effects of salbutamol on the two parameters were unrelated. Importantly, σCL reflected disease control better than FEV1. DISCUSSION: We conclude that σCL shows promise as an objective measure of disease activity in asthma.


Assuntos
Asma/fisiopatologia , Volume Expiratório Forçado , Pulmão/fisiopatologia , Troca Gasosa Pulmonar , Índice de Gravidade de Doença , Adulto , Idoso , Albuterol/administração & dosagem , Broncodilatadores/administração & dosagem , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Espirometria/métodos
7.
Phys Rev Lett ; 125(25): 258004, 2020 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-33416397

RESUMO

We use the swap Monte Carlo algorithm to analyze the glassy behavior of sticky spheres in equilibrium conditions at densities where conventional simulations and experiments fail to reach equilibrium, beyond predicted phase transitions and dynamic singularities. We demonstrate the existence of a unique ergodic region comprising all the distinct phases previously reported, except for a phase-separated region at strong adhesion. All structural and dynamic observables evolve gradually within this ergodic region, the physics evolving smoothly from well-known hard sphere glassy behavior at small adhesions and large densities, to a more complex glassy regime characterized by unusually broad distributions of relaxation timescales and length scales at large adhesions.

8.
Phys Rev Lett ; 123(17): 175501, 2019 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-31702270

RESUMO

Ultrastable vapor-deposited glasses display uncommon material properties. Most remarkably, upon heating they are believed to melt via a liquid front that originates at the free surface and propagates over a mesoscopic crossover length, before crossing over to bulk melting. We combine swap Monte Carlo with molecular dynamics simulations to prepare and melt isotropic amorphous films of unprecedendtly high kinetic stability. We are able to directly observe both bulk and front melting, and the crossover between them. We measure the front velocity over a broad range of conditions, and a crossover length scale that grows to nearly 400 particle diameters in the regime accessible to simulations. Our results disentangle the relative roles of kinetic stability and vapor deposition in the physical properties of stable glasses.

9.
Soft Matter ; 13(17): 3230-3239, 2017 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-28401216

RESUMO

We consider the sedimentation of a colloidal gel under confinement in the direction of gravity. The confinement allows us to compare directly experiments and computer simulations, for the same system size in the vertical direction. The confinement also leads to qualitatively different behaviour compared to bulk systems: in large systems gelation suppresses sedimentation, but for small systems sedimentation is enhanced relative to non-gelling suspensions, although the rate of sedimentation is reduced when the strength of the attraction between the colloids is strong. We map interaction parameters between a model experimental system (observed in real space) and computer simulations. Remarkably, we find that when simulating the system using Brownian dynamics in which hydrodynamic interactions between the particles are neglected, we find that sedimentation occurs on the same timescale as the experiments. An analysis of local structure in the simulations showed similar behaviour to gelation in the absence of gravity.

10.
J Chem Phys ; 145(24): 244505, 2016 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-28049315

RESUMO

We demonstrate a simple method by which time-dependent interactions can be exploited to improve self-assembly in colloidal systems. We apply this method to two systems: a model colloid with a short-ranged attractive potential, which undergoes crystallisation, and a schematic model of cluster growth. The method is based on initially strong bonds between particles, to accelerate nucleation, followed by a stage with weaker bonds, to promote the growth of high-quality assembled structures. We track the growth of clusters during assembly, which reveals insight into effects of multiple nucleation events and of competition between the growth of clusters with different properties.

11.
Phys Rev Lett ; 112(25): 255701, 2014 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-25014823

RESUMO

We investigate stable glassy states that are found when glass-forming liquids are biased to lower than average dynamical activity. By pinning the positions of randomly chosen particles, we show that many-body correlations in these states are relatively strong and long ranged compared to equilibrium reference states. The presence of strong many-body correlations in these apparently disordered systems supports the idea that stable glassy states exhibit a kind of "amorphous order," which helps to explain their stability.

12.
Artigo em Inglês | MEDLINE | ID: mdl-24229169

RESUMO

The effects of randomly pinning particles in a model glass-forming fluid are studied, with a focus on the dynamically heterogeneous relaxation in the presence of pinning. We show how four-point dynamical correlations can be analyzed in real space, allowing direct extraction of a length scale that characterizes dynamical heterogeneity. In the presence of pinning, the relaxation time of the glassy system increases by up to two decades, but there is almost no increase in either the four-point correlation length or the strength of the four-point correlations. We discuss the implications of these results for theories of the glass transition.

13.
J Chem Phys ; 138(22): 224506, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23781804

RESUMO

We study dynamical phase transitions in a model supercooled liquid. These transitions occur in ensembles of trajectories that are biased towards low (or high) dynamical activity. We compare two different measures of activity that were introduced in recent papers and we find that they are anti-correlated with each other. To interpret this result, we show that the two measures couple to motion on different length and time scales. We find that "inactive" states with very slow structural relaxation nevertheless have increased molecular motion on very short scales. We discuss these results in terms of the potential energy landscape of the system and in terms of the liquid structure in active/inactive states.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA