Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
PLoS Biol ; 21(3): e3002035, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996009

RESUMO

Cerebrospinal fluid (CSF) flow maintains healthy brain homeostasis, facilitating solute transport and the exchange of brain waste products. CSF flow is thus important for brain health, but the mechanisms that control its large-scale movement through the ventricles are not well understood. While it is well established that CSF flow is modulated by respiratory and cardiovascular dynamics, recent work has also demonstrated that neural activity is coupled to large waves of CSF flow in the ventricles during sleep. To test whether the temporal coupling between neural activity and CSF flow is in part due to a causal relationship, we investigated whether CSF flow could be induced by driving neural activity with intense visual stimulation. We manipulated neural activity with a flickering checkerboard visual stimulus and found that we could drive macroscopic CSF flow in the human brain. The timing and amplitude of CSF flow was matched to the visually evoked hemodynamic responses, suggesting neural activity can modulate CSF flow via neurovascular coupling. These results demonstrate that neural activity can contribute to driving CSF flow in the human brain and that the temporal dynamics of neurovascular coupling can explain this effect.


Assuntos
Acoplamento Neurovascular , Vigília , Humanos , Encéfalo/fisiologia , Acoplamento Neurovascular/fisiologia , Hemodinâmica , Sono , Imageamento por Ressonância Magnética
3.
Nat Commun ; 13(1): 5442, 2022 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-36114170

RESUMO

Awakening from sleep reflects a profound transformation in neural activity and behavior. The thalamus is a key controller of arousal state, but whether its diverse nuclei exhibit coordinated or distinct activity at transitions in behavioral arousal state is unknown. Using fast fMRI at ultra-high field (7 Tesla), we measured sub-second activity across thalamocortical networks and within nine thalamic nuclei to delineate these dynamics during spontaneous transitions in behavioral arousal state. We discovered a stereotyped sequence of activity across thalamic nuclei and cingulate cortex that preceded behavioral arousal after a period of inactivity, followed by widespread deactivation. These thalamic dynamics were linked to whether participants subsequently fell back into unresponsiveness, with unified thalamic activation reflecting maintenance of behavior. These results provide an outline of the complex interactions across thalamocortical circuits that orchestrate behavioral arousal state transitions, and additionally, demonstrate that fast fMRI can resolve sub-second subcortical dynamics in the human brain.


Assuntos
Nível de Alerta , Tálamo , Nível de Alerta/fisiologia , Encéfalo/diagnóstico por imagem , Humanos , Sono , Núcleos Talâmicos/diagnóstico por imagem , Núcleos Talâmicos/fisiologia , Tálamo/diagnóstico por imagem , Tálamo/fisiologia
4.
Neuroimage ; 245: 118658, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34656783

RESUMO

Recent studies have demonstrated that fast fMRI can track neural activity well above the temporal limit predicted by the canonical hemodynamic response model. While these findings are promising, the biophysical mechanisms underlying these fast fMRI phenomena remain underexplored. In this study, we discuss two aspects of the hemodynamic response, complementary to several existing hypotheses, that can accommodate faster fMRI dynamics beyond those predicted by the canonical model. First, we demonstrate, using both visual and somatosensory paradigms, that the timing and shape of hemodynamic response functions (HRFs) vary across graded levels of stimulus intensity-with lower-intensity stimulation eliciting faster and narrower HRFs. Second, we show that as the spatial resolution of fMRI increases, voxel-wise HRFs begin to deviate from the canonical model, with a considerable portion of voxels exhibiting faster temporal dynamics than predicted by the canonical HRF. Collectively, both stimulus/task intensity and image resolution can affect the sensitivity of fMRI to fast brain activity, which may partly explain recent observations of fast fMRI signals. It is further noteworthy that, while the present investigations focus on fast neural responses, our findings suggest that a revised hemodynamic model may benefit the many fMRI studies using paradigms with wide ranges of contrast levels (e.g., resting or naturalistic conditions) or with modern, high-resolution MR acquisitions.


Assuntos
Hemodinâmica/fisiologia , Imageamento por Ressonância Magnética/métodos , Adulto , Mapeamento Encefálico/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Córtex Visual/fisiologia , Adulto Jovem
5.
Cereb Cortex ; 31(1): 463-482, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32887984

RESUMO

Accurate and automated reconstruction of the in vivo human cerebral cortical surface from anatomical magnetic resonance (MR) images facilitates the quantitative analysis of cortical structure. Anatomical MR images with sub-millimeter isotropic spatial resolution improve the accuracy of cortical surface and thickness estimation compared to the standard 1-millimeter isotropic resolution. Nonetheless, sub-millimeter resolution acquisitions require averaging multiple repetitions to achieve sufficient signal-to-noise ratio and are therefore long and potentially vulnerable to subject motion. We address this challenge by synthesizing sub-millimeter resolution images from standard 1-millimeter isotropic resolution images using a data-driven supervised machine learning-based super-resolution approach achieved via a deep convolutional neural network. We systematically characterize our approach using a large-scale simulated dataset and demonstrate its efficacy in empirical data. The super-resolution data provide improved cortical surfaces similar to those obtained from native sub-millimeter resolution data. The whole-brain mean absolute discrepancy in cortical surface positioning and thickness estimation is below 100 µm at the single-subject level and below 50 µm at the group level for the simulated data, and below 200 µm at the single-subject level and below 100 µm at the group level for the empirical data, making the accuracy of cortical surfaces derived from super-resolution sufficient for most applications.


Assuntos
Córtex Cerebral/patologia , Processamento de Imagem Assistida por Computador , Redes Neurais de Computação , Encéfalo/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Razão Sinal-Ruído
6.
Neuroimage ; 213: 116707, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32145437

RESUMO

Slow changes in systemic brain physiology can elicit large fluctuations in fMRI time series, which manifest as structured spatial patterns of temporal correlations between distant brain regions. Here, we investigated whether such "physiological networks"-sets of segregated brain regions that exhibit similar responses following slow changes in systemic physiology-resemble patterns associated with large-scale networks typically attributed to remotely synchronized neuronal activity. By analyzing a large group of subjects from the 3T Human Connectome Project (HCP) database, we demonstrate brain-wide and noticeably heterogenous dynamics tightly coupled to either respiratory variation or heart rate changes. We show, using synthesized data generated from physiological recordings across subjects, that these physiologically-coupled fluctuations alone can produce networks that strongly resemble previously reported resting-state networks, suggesting that, in some cases, the "physiological networks" seem to mimic the neuronal networks. Further, we show that such physiologically-relevant connectivity estimates appear to dominate the overall connectivity observations in multiple HCP subjects, and that this apparent "physiological connectivity" cannot be removed by the use of a single nuisance regressor for the entire brain (such as global signal regression) due to the clear regional heterogeneity of the physiologically-coupled responses. Our results challenge previous notions that physiological confounds are either localized to large veins or globally coherent across the cortex, therefore emphasizing the necessity to consider potential physiological contributions in fMRI-based functional connectivity studies. The rich spatiotemporal patterns carried by such "physiological" dynamics also suggest great potential for clinical biomarkers that are complementary to large-scale neuronal networks.


Assuntos
Encéfalo/fisiologia , Frequência Cardíaca/fisiologia , Rede Nervosa/fisiologia , Respiração , Descanso/fisiologia , Adulto , Conectoma , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino
7.
Science ; 366(6465): 628-631, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31672896

RESUMO

Sleep is essential for both cognition and maintenance of healthy brain function. Slow waves in neural activity contribute to memory consolidation, whereas cerebrospinal fluid (CSF) clears metabolic waste products from the brain. Whether these two processes are related is not known. We used accelerated neuroimaging to measure physiological and neural dynamics in the human brain. We discovered a coherent pattern of oscillating electrophysiological, hemodynamic, and CSF dynamics that appears during non-rapid eye movement sleep. Neural slow waves are followed by hemodynamic oscillations, which in turn are coupled to CSF flow. These results demonstrate that the sleeping brain exhibits waves of CSF flow on a macroscopic scale, and these CSF dynamics are interlinked with neural and hemodynamic rhythms.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Líquido Cefalorraquidiano/fisiologia , Sono/fisiologia , Adulto , Encéfalo/irrigação sanguínea , Circulação Cerebrovascular , Ritmo Delta , Eletroencefalografia , Feminino , Hemodinâmica , Humanos , Imageamento por Ressonância Magnética , Masculino , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA