Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Methods Mol Biol ; 2754: 437-444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38512680

RESUMO

Microglia are brain-resident phagocytic cells, considered to be the innate immune cells of the central nervous system. Microglia respond to both infectious pathogens in the brain and sterile cellular debris, including the proteinaceous aggregates that accumulate in the brains of patients with Alzheimer's disease (AD). Microtubule-associated protein Tau is an intracellular protein that self-aggregates into neurofibrillary tangles in Alzheimer's disease and many other neurodegenerative diseases. Ongoing clinical trials are testing whether therapeutic antibodies specific to Tau protein aggregates can reduce pathological protein deposition and improve the course of disease. Data suggest that Tau-specific antibodies act on extracellular Tau aggregates by promoting uptake into microglia cells and thus preventing its prion-like spread to unaffected neurons. Here we describe a protocol to test the effect of Tau-specific antibodies on Tau uptake into microglia by flow cytometry. Recombinant Tau protein is fibrillized in vitro and tagged with a fluorescent label. Then, fibrillized Tau is incubated with the antibody of interest and applied to microglial cells in culture. Uptake of Tau into microglia is then assessed by measuring fluorescence intensity by flow cytometry. With slight modifications, this assay can be used to test effects of many antibodies, various Tau protein compositions, and different microglial sources in a high-throughput format.


Assuntos
Doença de Alzheimer , Proteínas tau , Humanos , Proteínas tau/metabolismo , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Citometria de Fluxo , Anticorpos/metabolismo , Encéfalo/metabolismo
3.
bioRxiv ; 2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38260669

RESUMO

Primarily a respiratory infection, numerous patients infected with SARS-CoV-2 present with neurologic symptoms, some continuing long after viral clearance as a persistent symptomatic phase termed "long COVID". Advanced age increases the risk of severe disease, as well as incidence of long COVID. We hypothesized that perturbations in the aged immune response predispose elderly individuals to severe coronavirus infection and post-infectious sequelae. Using a murine model of respiratory coronavirus, mouse hepatitis virus strain A59 (MHV-A59), we found that aging increased clinical illness and lethality to MHV infection, with aged animals harboring increased virus in the brain during acute infection. This was coupled with an unexpected increase in activated CD8+ T cells within the brains of aged animals but reduced antigen specificity of those CD8+ T cells. Aged animals demonstrated spatial learning impairment following MHV infection, which correlated with increased neuronal cell death and reduced neuronal regeneration in aged hippocampus. Using primary cell culture, we demonstrated that activated CD8+ T cells induce neuronal death, independent of antigen-specificity. Specifically, higher levels of CD8+ T cell-derived IFN-γ correlated with neuronal death. These results support the evidence that CD8+ T cells in the brain directly contribute to cognitive dysfunction following coronavirus infection in aged individuals.

5.
Viruses ; 15(11)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-38005878

RESUMO

Flaviviruses are a family of enveloped viruses with a positive-sense RNA genome, transmitted by arthropod vectors. These viruses are known for their broad cellular tropism leading to infection of multiple body systems, which can include the central nervous system. Neurologic effects of flavivirus infection can arise during both acute and post-acute infectious periods; however, the molecular and cellular mechanisms underlying post-acute sequelae are not fully understood. Here, we review recent studies that have examined molecular and cellular mechanisms that may contribute to neurologic sequelae following infection with the West Nile virus, Japanese encephalitis virus, Zika virus, dengue virus, and St. Louis encephalitis virus. Neuronal death, either from direct infection or due to the resultant inflammatory response, is a common mechanism by which flavivirus infection can lead to neurologic impairment. Other types of cellular damage, such as oxidative stress and DNA damage, appear to be more specific to certain viruses. This article aims to highlight mechanisms of cellular damage that are common across several flavivirus members and mechanisms that are more unique to specific members. Our goal is to inspire further research to improve understanding of this area in the hope of identifying treatment options for flavivirus-associated neurologic changes.


Assuntos
Culicidae , Infecções por Flavivirus , Flavivirus , Vírus do Nilo Ocidental , Infecção por Zika virus , Zika virus , Animais , Humanos , Mosquitos Vetores , Flavivirus/genética , Vírus do Nilo Ocidental/genética , Zika virus/fisiologia
7.
Front Aging Neurosci ; 15: 1144036, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37009464

RESUMO

The blood-brain barrier (BBB) is the neurovascular structure that regulates the passage of cells and molecules to and from the central nervous system (CNS). Alzheimer's disease (AD) is a neurodegenerative disorder that is associated with gradual breakdown of the BBB, permitting entry of plasma-derived neurotoxins, inflammatory cells, and microbial pathogens into the CNS. BBB permeability can be visualized directly in AD patients using imaging technologies including dynamic contrast-enhanced and arterial spin labeling magnetic resonance imaging, and recent studies employing these techniques have shown that subtle changes in BBB stability occur prior to deposition of the pathological hallmarks of AD, senile plaques, and neurofibrillary tangles. These studies suggest that BBB disruption may be useful as an early diagnostic marker; however, AD is also accompanied by neuroinflammation, which can complicate these analyses. This review will outline the structural and functional changes to the BBB that occur during AD pathogenesis and highlight current imaging technologies that can detect these subtle changes. Advancing these technologies will improve both the diagnosis and treatment of AD and other neurodegenerative diseases.

9.
Curr Opin Neurobiol ; 76: 102603, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35810534

RESUMO

The impact of the immune system on the etiopathogenesis of neurodegenerative diseases, including Alzheimer's disease, is a rapidly growing area of investigation. Evidence from human patients and animal models implicates neurotropic viral infections, and specifically the antiviral immune response of brain-infiltrating CD8+ T cells, as potential drivers of disease pathology. While infiltration and retention of CD8+ T cells within the brain following viral infection is associated with improved survival, CD8+ T cells also contribute to neuronal death and gliosis which underlie cognitive impairment in several disease models. Here we review the role of antiviral CD8+ T cells as potential mediators of cognitive impairment and highlight the mechanisms by which brain-resident CD8+ T cells may contribute to neurodegenerative disease pathology.


Assuntos
Disfunção Cognitiva , Doenças Neurodegenerativas , Animais , Antivirais , Encéfalo , Linfócitos T CD8-Positivos , Humanos
11.
J Virol ; 95(20): e0084421, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34346770

RESUMO

Dengue virus (DENV) and West Nile virus (WNV) are arthropod-transmitted flaviviruses that cause systemic vascular leakage and encephalitis syndromes, respectively, in humans. However, the viral factors contributing to these specific clinical disorders are not completely understood. Flavivirus nonstructural protein 1 (NS1) is required for replication, expressed on the cell surface, and secreted as a soluble glycoprotein, reaching high levels in the blood of infected individuals. Extracellular DENV NS1 and WNV NS1 interact with host proteins and cells, have immune evasion functions, and promote endothelial dysfunction in a tissue-specific manner. To characterize how differences in DENV NS1 and WNV NS1 might function in pathogenesis, we generated WNV NS1 variants with substitutions corresponding to residues found in DENV NS1. We discovered that the substitution NS1-P101K led to reduced WNV infectivity in the brain and attenuated lethality in infected mice, although the virus replicated efficiently in cell culture and peripheral organs and bound at wild-type levels to brain endothelial cells and complement components. The P101K substitution resulted in reduced NS1 antigenemia in mice, and this was associated with reduced WNV spread to the brain. Because exogenous administration of NS1 protein rescued WNV brain infectivity in mice, we conclude that circulating WNV NS1 facilitates viral dissemination into the central nervous system and impacts disease outcomes. IMPORTANCE Flavivirus NS1 serves as an essential scaffolding molecule during virus replication but also is expressed on the cell surface and is secreted as a soluble glycoprotein that circulates in the blood of infected individuals. Although extracellular forms of NS1 are implicated in immune modulation and in promoting endothelial dysfunction at blood-tissue barriers, it has been challenging to study specific effects of NS1 on pathogenesis without disrupting its key role in virus replication. Here, we assessed WNV NS1 variants that do not affect virus replication and evaluated their effects on pathogenesis in mice. Our characterization of WNV NS1-P101K suggests that the levels of NS1 in the circulation facilitate WNV dissemination to the brain and affect disease outcomes. Our findings facilitate understanding of the role of NS1 during flavivirus infection and support antiviral strategies for targeting circulating forms of NS1.


Assuntos
Proteínas não Estruturais Virais/metabolismo , Vírus do Nilo Ocidental/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/virologia , Vírus da Dengue/efeitos dos fármacos , Vírus da Dengue/imunologia , Vírus da Dengue/metabolismo , Células Endoteliais , Feminino , Flavivirus/patogenicidade , Evasão da Resposta Imune , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas não Estruturais Virais/análise , Proteínas não Estruturais Virais/sangue , Proteínas não Estruturais Virais/genética , Replicação Viral/genética , Replicação Viral/fisiologia , Febre do Nilo Ocidental/imunologia , Vírus do Nilo Ocidental/efeitos dos fármacos , Vírus do Nilo Ocidental/imunologia
12.
Front Cell Neurosci ; 15: 691136, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305533

RESUMO

Neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis, comprise a family of disorders characterized by progressive loss of nervous system function. Neuroinflammation is increasingly recognized to be associated with many neurodegenerative diseases but whether it is a cause or consequence of the disease process is unclear. Of growing interest is the role of microbial infections in inciting degenerative neuroinflammatory responses and genetic factors that may regulate those responses. Microbial infections cause inflammation within the central nervous system through activation of brain-resident immune cells and infiltration of peripheral immune cells. These responses are necessary to protect the brain from lethal infections but may also induce neuropathological changes that lead to neurodegeneration. This review discusses the molecular and cellular mechanisms through which microbial infections may increase susceptibility to neurodegenerative diseases. Elucidating these mechanisms is critical for developing targeted therapeutic approaches that prevent the onset and slow the progression of neurodegenerative diseases.

13.
Aging Cell ; 20(8): e13412, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34327802

RESUMO

West Nile virus (WNV) is an emerging pathogen that causes disease syndromes ranging from a mild flu-like illness to encephalitis. While the incidence of WNV infection is fairly uniform across age groups, the risk of lethal encephalitis increases with advanced age. Prior studies have demonstrated age-related, functional immune deficits that limit systemic antiviral immunity and increase mortality; however, the effect of age on antiviral immune responses specifically within the central nervous system (CNS) is unknown. Here, we show that aged mice exhibit increased peripheral organ and CNS tissue viral burden, the latter of which is associated with alterations in activation of both myeloid and lymphoid cells compared with similarly infected younger animals. Aged mice exhibit lower MHCII expression by microglia, and higher levels of PD1 and lower levels of IFNγ expression by WNV-specific CD8+ T cells in the CNS and CD8+ CD45+ cells. These data indicate that the aged CNS exhibits limited local reactivation of T cells during viral encephalitis, which may lead to reduced virologic control at this site.


Assuntos
Sistema Nervoso Central/fisiopatologia , Imunidade/genética , Febre do Nilo Ocidental/fisiopatologia , Envelhecimento , Animais , Masculino , Camundongos
14.
J Vis Exp ; (159)2020 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-32510500

RESUMO

Increasing evidence supports the hypothesis that neuro-immune interactions impact nervous system function in both homeostatic and pathologic conditions. A well-studied function of major histocompatibility complex class I (MHCI) is the presentation of cell-derived peptides to the adaptive immune system, particularly in response to infection. More recently it has been shown that the expression of MHCI molecules on neurons can modulate activity-dependent changes in the synaptic connectivity during normal development and neurologic disorders. The importance of these functions to the brain health supports the need for a sensitive assay that readily detects MHCI expression on neurons. Here we describe a method for primary culture of murine hippocampal neurons and then assessment of MHCI expression by flow cytometric analysis. Murine hippocampus is microdissected from prenatal mouse pups at the embryonic day 18. Tissue is dissociated into a single cell suspension using enzymatic and mechanical techniques, then cultured in a serum-free media that limits growth of non-neuronal cells. After 7 days in vitro, MHCI expression is stimulated by treating cultured cells pharmacologically with beta interferon. MHCI molecules are labeled in situ with a fluorescently tagged antibody, then cells are non-enzymatically dissociated into a single cell suspension. To confirm the neuronal identity, cells are fixed with paraformaldehyde, permeabilized, and labeled with a fluorescently tagged antibody that recognizes neuronal nuclear antigen NeuN. MHCI expression is then quantified on neurons by flow cytometric analysis. Neuronal cultures can easily be manipulated by either genetic modifications or pharmacologic interventions to test specific hypotheses. With slight modifications, these methods can be used to culture other neuronal populations or to assess expression of other proteins of interest.


Assuntos
Citometria de Fluxo/métodos , Hipocampo/citologia , Antígenos de Histocompatibilidade Classe I/metabolismo , Neurônios/metabolismo , Animais , Células Cultivadas , Feminino , Hipocampo/embriologia , Camundongos Endogâmicos C57BL , Neurônios/citologia
15.
Annu Rev Immunol ; 37: 73-95, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026414

RESUMO

Neurotropic RNA viruses continue to emerge and are increasingly linked to diseases of the central nervous system (CNS) despite viral clearance. Indeed, the overall mortality of viral encephalitis in immunocompetent individuals is low, suggesting efficient mechanisms of virologic control within the CNS. Both immune and neural cells participate in this process, which requires extensive innate immune signaling between resident and infiltrating cells, including microglia and monocytes, that regulate the effector functions of antiviral T and B cells as they gain access to CNS compartments. While these interactions promote viral clearance via mainly neuroprotective mechanisms, they may also promote neuropathology and, in some cases, induce persistent alterations in CNS physiology and function that manifest as neurologic and psychiatric diseases. This review discusses mechanisms of RNA virus clearance and neurotoxicity during viral encephalitis with a focus on the cytokines essential for immune and neural cell inflammatory responses and interactions. Understanding neuroimmune communications in the setting of viral infections is essential for the development of treatments that augment neuroprotective processes while limiting ongoing immunopathological processes that cause ongoing CNS disease.


Assuntos
Encéfalo/imunologia , Imunidade Inata , Microglia/fisiologia , Infecções por Vírus de RNA/imunologia , Vírus de RNA/fisiologia , Animais , Barreira Hematoencefálica , Encéfalo/virologia , Humanos , Inflamação Neurogênica , Neuroimunomodulação
16.
J Neuroinflammation ; 16(1): 22, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704498

RESUMO

BACKGROUND: Microglia are resident macrophages of the central nervous system (CNS) locally maintained through colony-stimulating factor 1 receptor (CSF1R) signaling. Microglial depletion via CSF1R inactivation improves cognition in mouse models of neuroinflammation, but limits virologic control in the CNS of mouse models of neurotropic infections by unknown mechanisms. We hypothesize that CSF1R plays a critical role in myeloid cell responses that restrict viral replication and locally restimulate recruited antiviral T cells within the CNS. METHODS: The impact of CSF1R signaling during West Nile virus infection was assessed in vivo using a mouse model of neurotropic infection. Pharmacological inactivation of CSF1R was achieved using PLX5622 prior to infection with virulent or attenuated strains of West Nile virus (WNV), an emerging neuropathogen. The subsequent effect of CSF1R antagonism on virologic control was assessed by measuring mortality and viral titers in the CNS and peripheral organs. Immune responses were assessed by flow cytometric-based phenotypic analyses of both peripheral and CNS immune cells. RESULTS: Mice treated with CSF1R antagonist prior to infection exhibited higher susceptibility to lethal WNV infection and lack of virologic control in both the CNS and periphery. CSFR1 antagonism reduced B7 co-stimulatory signals on peripheral and CNS antigen-presenting cells (APCs) by depleting CNS cellular sources, which limited local reactivation of CNS-infiltrating virus-specific T cells and reduced viral clearance. CONCLUSIONS: Our results demonstrate the impact of CSF1R antagonism on APC activation in the CNS and periphery and the importance of microglia in orchestrating the CNS immune response following neurotropic viral infection. These data will be an important consideration when assessing the benefit of CSF1R antagonism, which has been investigated as a therapeutic for neurodegenerative conditions, in which neuroinflammation is a contributing factor.


Assuntos
Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/virologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Febre do Nilo Ocidental/virologia , Animais , Antivirais , Linfócitos T CD8-Positivos/imunologia , Imunidade Celular/efeitos dos fármacos , Ativação de Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/virologia , Compostos Orgânicos/farmacologia , Carga Viral , Viremia/virologia , Febre do Nilo Ocidental/imunologia
17.
J Biol Chem ; 290(35): 21652-62, 2015 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-26126828

RESUMO

Tauopathies are neurodegenerative diseases characterized by accumulation of Tau amyloids, and include Alzheimer disease and certain frontotemporal dementias. Trans-neuronal propagation of amyloid mediated by extracellular Tau may underlie disease progression. Consistent with this, active and passive vaccination studies in mouse models reduce pathology, although by unknown mechanisms. We previously reported that intracerebroventricular administration of three anti-Tau monoclonal antibodies (HJ8.5, HJ9.3, and HJ9.4) reduces pathology in a model overexpressing full-length mutant (P301S) human Tau. We now study effects of these three antibodies and a negative control antibody (HJ3.4) on Tau aggregate uptake into BV2 microglial-like cells and primary neurons. Antibody-independent Tau uptake into BV2 cells was blocked by heparin, consistent with a previously described role for heparan sulfate proteoglycans. Two therapeutic antibodies (HJ8.5 and HJ9.4) promoted uptake of full-length Tau fibrils into microglia via Fc receptors. Surprisingly, HJ9.3 promoted uptake of fibrils composed of the Tau repeat domain or Alzheimer disease-derived Tau aggregates, but failed to influence full-length recombinant Tau fibrils. Size fractionation of aggregates showed that antibodies preferentially promote uptake of larger oligomers (n ≥ ∼ 20-mer) versus smaller oligomers (n ∼ 10-mer) or monomer. No antibody inhibited uptake of full-length recombinant fibrils into primary neurons, but HJ9.3 blocked neuronal uptake of Tau repeat domain fibrils and Alzheimer disease-derived Tau. Antibodies thus have multiple potential mechanisms, including clearance via microglia and blockade of neuronal uptake. However these effects are epitope- and aggregate size-dependent. Establishing specific mechanisms of antibody activity in vitro may help in design and optimization of agents that are more effective in vivo.


Assuntos
Anticorpos/uso terapêutico , Microglia/metabolismo , Neurônios/metabolismo , Proteínas tau/imunologia , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide , Animais , Linhagem Celular , Córtex Cerebral/patologia , Proteoglicanas de Heparan Sulfato/metabolismo , Humanos , Camundongos , Estrutura Terciária de Proteína , Receptores de IgG/metabolismo , Proteínas tau/química
18.
Biochem J ; 462(1): 77-88, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-24869773

RESUMO

In Alzheimer's disease, the microtubule-associated protein tau dissociates from the neuronal cytoskeleton and aggregates to form cytoplasmic inclusions. Although hyperphosphorylation of tau serine and threonine residues is an established trigger of tau misfunction and aggregation, tau modifications extend to lysine residues as well, raising the possibility that different modification signatures depress or promote aggregation propensity depending on site occupancy. To identify lysine residue modifications associated with normal tau function, soluble tau proteins isolated from four cognitively normal human brains were characterized by MS methods. The major detectable lysine modification was found to be methylation, which appeared in the form of mono- and di-methyl lysine residues distributed among at least 11 sites. Unlike tau phosphorylation sites, the frequency of lysine methylation was highest in the microtubule-binding repeat region that mediates both microtubule binding and homotypic interactions. When purified recombinant human tau was modified in vitro through reductive methylation, its ability to promote tubulin polymerization was retained, whereas its aggregation propensity was greatly attenuated at both nucleation and extension steps. These data establish lysine methylation as part of the normal tau post-translational modification signature in human brain, and suggest that it can function in part to protect against pathological tau aggregation.


Assuntos
Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas tau/metabolismo , Sequência de Aminoácidos , Humanos , Masculino , Metilação , Microtúbulos/metabolismo , Pessoa de Meia-Idade , Fosforilação , Estrutura Quaternária de Proteína , Espectrometria de Massas em Tandem , Tubulina (Proteína)/metabolismo
19.
Int J Alzheimers Dis ; 2012: 752894, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22970406

RESUMO

Alzheimer's disease is characterized pathologically by extracellular senile plaques, intracellular neurofibrillary tangles, and granulovacuolar degeneration. It has been debated whether these hallmark lesions are markers or mediators of disease progression, and numerous paradigms have been proposed to explain the appearance of each lesion individually. However, the unfaltering predictability of these lesions suggests a single pathological nidus central to disease onset and progression. One of the earliest pathologies observed in Alzheimer's disease is endocytic dysfunction. Here we review the recent literature of endocytic dysfunction with particular focus on disrupted lysosomal fusion and propose it as a unifying hypothesis for the three most-studied lesions of Alzheimer's disease.

20.
Acta Neuropathol ; 123(1): 105-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22033876

RESUMO

In sporadic Alzheimer's disease (AD), neurofibrillary lesion formation is preceded by extensive post-translational modification of the microtubule associated protein tau. To identify the modification signature associated with tau lesion formation at single amino acid resolution, immunopurified paired helical filaments were isolated from AD brain and subjected to nanoflow liquid chromatography-tandem mass spectrometry analysis. The resulting spectra identified monomethylation of lysine residues as a new tau modification. The methyl-lysine was distributed among seven residues located in the projection and microtubule binding repeat regions of tau protein, with one site, K254, being a substrate for a competing lysine modification, ubiquitylation. To characterize methyl lysine content in intact tissue, hippocampal sections prepared from post mortem late-stage AD cases were subjected to double-label confocal fluorescence microscopy using anti-tau and anti-methyl lysine antibodies. Anti-methyl lysine immunoreactivity colocalized with 78 ± 13% of neurofibrillary tangles in these specimens. Together these data provide the first evidence that tau in neurofibrillary lesions is post-translationally modified by lysine methylation.


Assuntos
Doença de Alzheimer/metabolismo , Lisina/metabolismo , Ubiquitinação/fisiologia , Proteínas tau/metabolismo , Idoso , Idoso de 80 Anos ou mais , Sequência de Aminoácidos , Feminino , Humanos , Lisina/química , Masculino , Metilação , Pessoa de Meia-Idade , Dados de Sequência Molecular , Emaranhados Neurofibrilares/metabolismo , Emaranhados Neurofibrilares/patologia , Fosforilação/fisiologia , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Proteínas tau/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA