Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Hematol ; 99(7): 1313-1325, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38629683

RESUMO

ß-thalassemia is a disorder characterized by anemia, ineffective erythropoiesis (IE), and iron overload, whose treatment still requires improvement. The activin receptor-ligand trap Luspatercept, a novel therapeutic option for ß-thalassemia, stimulates erythroid differentiation inhibiting the transforming growth factor ß pathway. However, its exact mechanism of action and the possible connection with erythropoietin (Epo), the erythropoiesis governing cytokine, remain to be clarified. Moreover, Luspatercept does not correct all the features of the disease, calling for the identification of strategies that enhance its efficacy. Transferrin receptor 2 (TFR2) regulates systemic iron homeostasis in the liver and modulates the response to Epo of erythroid cells, thus balancing red blood cells production with iron availability. Stimulating Epo signaling, hematopoietic Tfr2 deletion ameliorates anemia and IE in Hbbth3/+ thalassemic mice. To investigate whether hematopoietic Tfr2 inactivation improves the efficacy of Luspatercept, we treated Hbbth3/+ mice with or without hematopoietic Tfr2 (Tfr2BMKO/Hbbth3/+) with RAP-536, the murine analog of Luspatercept. As expected, both hematopoietic Tfr2 deletion and RAP-536 significantly ameliorate IE and anemia, and the combined approach has an additive effect. Since RAP-536 has comparable efficacy in both Hbbth3/+ and Tfr2BMKO/Hbbth3/+ animals, we propose that the drug promotes erythroid differentiation independently of TFR2 and EPO stimulation. Notably, the lack of Tfr2, but not RAP-536, can also attenuate iron-overload and related complications. Overall, our results shed further light on the mechanism of action of Luspatercept and suggest that strategies aimed at inhibiting hematopoietic TFR2 might improve the therapeutic efficacy of activin receptor-ligand traps.


Assuntos
Receptores da Transferrina , Proteínas Recombinantes de Fusão , Talassemia beta , Animais , Talassemia beta/tratamento farmacológico , Talassemia beta/genética , Camundongos , Receptores da Transferrina/genética , Proteínas Recombinantes de Fusão/uso terapêutico , Proteínas Recombinantes de Fusão/farmacologia , Eritropoese/efeitos dos fármacos , Fragmentos Fc das Imunoglobulinas/farmacologia , Fragmentos Fc das Imunoglobulinas/uso terapêutico , Camundongos Knockout , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Eritropoetina/uso terapêutico , Eritropoetina/farmacologia , Deleção de Genes , Receptores de Activinas Tipo II
2.
Am J Hematol ; 98(8): 1223-1235, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37199280

RESUMO

The expression of the iron regulatory hormone hepcidin in hepatocytes is regulated by the BMP-SMAD pathway through the type I receptors ALK2 and ALK3, the type II receptors ACVR2A and BMPR2, and the ligands BMP2 and BMP6. We previously identified the immunophilin FKBP12 as a new hepcidin inhibitor that acts by blocking ALK2. Both the physiologic ALK2 ligand BMP6 and the immunosuppressive drug Tacrolimus (TAC) displace FKBP12 from ALK2 and activate the signaling. However, the molecular mechanism whereby FKBP12 regulates BMP-SMAD pathway activity and thus hepcidin expression remains unclear. Here, we show that FKBP12 acts by modulating BMP receptor interactions and ligand responsiveness. We first demonstrate that in primary murine hepatocytes TAC regulates hepcidin expression exclusively via FKBP12. Downregulation of the BMP receptors reveals that ALK2, to a lesser extent ALK3, and ACVR2A are required for hepcidin upregulation in response to both BMP6 and TAC. Mechanistically, TAC and BMP6 increase ALK2 homo-oligomerization and ALK2-ALK3 hetero-oligomerization and the interaction between ALK2 and the type II receptors. By acting on the same receptors, TAC and BMP6 cooperate in BMP pathway activation and hepcidin expression both in vitro and in vivo. Interestingly, the activation state of ALK3 modulates its interaction with FKBP12, which may explain the cell-specific activity of FKBP12. Overall, our results identify the mechanism whereby FKBP12 regulates the BMP-SMAD pathway and hepcidin expression in hepatocytes, and suggest that FKBP12-ALK2 interaction is a potential pharmacologic target in disorders caused by defective BMP-SMAD signaling and characterized by low hepcidin and high BMP6 expression.


Assuntos
Hepcidinas , Proteína 1A de Ligação a Tacrolimo , Humanos , Camundongos , Animais , Hepcidinas/genética , Hepcidinas/metabolismo , Proteína 1A de Ligação a Tacrolimo/genética , Proteína 1A de Ligação a Tacrolimo/metabolismo , Ligantes , Receptores de Proteínas Morfogenéticas Ósseas/metabolismo , Hepatócitos/metabolismo , Proteína Morfogenética Óssea 6/genética
3.
Int J Mol Sci ; 24(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36835406

RESUMO

Because of its peculiar redox properties, iron is an essential element in living organisms, being involved in crucial biochemical processes such as oxygen transport, energy production, DNA metabolism, and many others. However, its propensity to accept or donate electrons makes it potentially highly toxic when present in excess and inadequately buffered, as it can generate reactive oxygen species. For this reason, several mechanisms evolved to prevent both iron overload and iron deficiency. At the cellular level, iron regulatory proteins, sensors of intracellular iron levels, and post-transcriptional modifications regulate the expression and translation of genes encoding proteins that modulate the uptake, storage, utilization, and export of iron. At the systemic level, the liver controls body iron levels by producing hepcidin, a peptide hormone that reduces the amount of iron entering the bloodstream by blocking the function of ferroportin, the sole iron exporter in mammals. The regulation of hepcidin occurs through the integration of multiple signals, primarily iron, inflammation and infection, and erythropoiesis. These signals modulate hepcidin levels by accessory proteins such as the hemochromatosis proteins hemojuvelin, HFE, and transferrin receptor 2, the serine protease TMPRSS6, the proinflammatory cytokine IL6, and the erythroid regulator Erythroferrone. The deregulation of the hepcidin/ferroportin axis is the central pathogenic mechanism of diseases characterized by iron overload, such as hemochromatosis and iron-loading anemias, or by iron deficiency, such as IRIDA and anemia of inflammation. Understanding the basic mechanisms involved in the regulation of hepcidin will help in identifying new therapeutic targets to treat these disorders.


Assuntos
Hepcidinas , Deficiências de Ferro , Sobrecarga de Ferro , Ferro , Animais , Hemocromatose/metabolismo , Hepcidinas/metabolismo , Inflamação , Ferro/metabolismo , Deficiências de Ferro/metabolismo
4.
Am J Hematol ; 97(10): 1324-1336, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36071579

RESUMO

ß-thalassemia is a genetic disorder caused by mutations in the ß-globin gene, and characterized by anemia, ineffective erythropoiesis and iron overload. Patients affected by the most severe transfusion-dependent form of the disease (TDT) require lifelong blood transfusions and iron chelation therapy, a symptomatic treatment associated with several complications. Other therapeutic opportunities are available, but none is fully effective and/or applicable to all patients, calling for the identification of novel strategies. Transferrin receptor 2 (TFR2) balances red blood cells production according to iron availability, being an activator of the iron-regulatory hormone hepcidin in the liver and a modulator of erythropoietin signaling in erythroid cells. Selective Tfr2 deletion in the BM improves anemia and iron-overload in non-TDT mice, both as a monotherapy and, even more strikingly, in combination with iron-restricting approaches. However, whether Tfr2 targeting might represent a therapeutic option for TDT has never been investigated so far. Here, we prove that BM Tfr2 deletion improves anemia, erythrocytes morphology and ineffective erythropoiesis in the Hbbth1/th2 murine model of TDT. This effect is associated with a decrease in the expression of α-globin, which partially corrects the unbalance with ß-globin chains and limits the precipitation of misfolded hemoglobin, and with a decrease in the activation of unfolded protein response. Remarkably, BM Tfr2 deletion is also sufficient to avoid long-term blood transfusions required for survival of Hbbth1/th2 animals, preventing mortality due to chronic anemia and reducing transfusion-associated complications, such as progressive iron-loading. Altogether, TFR2 targeting might represent a promising therapeutic option also for TDT.


Assuntos
Sobrecarga de Ferro , Receptores da Transferrina , Talassemia beta , Animais , Transfusão de Sangue , Modelos Animais de Doenças , Ferro/metabolismo , Sobrecarga de Ferro/genética , Sobrecarga de Ferro/metabolismo , Camundongos , Receptores da Transferrina/genética , Globinas beta , Talassemia beta/genética , Talassemia beta/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA