Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 181: 57-66, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37315764

RESUMO

m6A mRNA methylation controls cardiomyocyte function and increased overall m6A levels are a stereotyping finding in heart failure independent of the underlying etiology. However, it is largely unknown how the information is read by m6A reader proteins in heart failure. Here we show that the m6A reader protein Ythdf2 controls cardiac function and identified a novel mechanism how reader proteins control gene expression and cardiac function. Deletion of Ythdf2 in cardiomyocytes in vivo leads to mild cardiac hypertrophy, reduced heart function, and increased fibrosis during pressure overload as well as during aging. Similarly, in vitro the knockdown of Ythdf2 results in cardiomyocyte growth and remodeling. Mechanistically, we identified the eucaryotic elongation factor 2 as post-transcriptionally regulated by Ythdf2 using cell type specific Ribo-seq data. Our study expands our understanding on the regulatory functions of m6A methylation in cardiomyocytes and how cardiac function is controlled by the m6A reader protein Ythdf2.


Assuntos
Insuficiência Cardíaca , Remodelação Ventricular , Humanos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Remodelação Ventricular/genética , Metilação , Miócitos Cardíacos/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo
2.
Sci Rep ; 10(1): 13740, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32792615

RESUMO

Lentiviral modification of hematopoietic stem cells (HSCs) paved the way for in vivo experimentation and therapeutic approaches in patients with genetic disease. A disadvantage of this method is the use of a ubiquitous promoter leads not only to genetic modification of the leukocyte subset of interest e.g. T-cells, but also all other subsequent leukocyte progeny of the parent HSCs. To overcome this limitation we tested a bicistronic lentivirus, enabling subset specific modifications. Designed novel lentiviral constructs harbor a global promoter (mPGK) regulating mCherry for HSCs selection and a T-cell specific promoter upstream of eGFP. Two T-cell specific promoters were assessed: the distal Lck-(dLck) and the CD3δ-promoter. Transduced HSCs were FACS sorted by mCherry expression and transferred into sublethally irradiated C57/BL6 mice. Successful transplantation and T-cell specific expression of eGFP was monitored by peripheral blood assessment. Furthermore, recruitment response of lentiviral engineered leukocytes to the site of inflammation was tested in a peritonitis model without functional impairment. Our constructed lentivirus enables fast generation of subset specific leukocyte transgenesis as shown in T-cells in vivo and opens new opportunities to modify other HSCs derived subsets in the future.


Assuntos
Células-Tronco Hematopoéticas/virologia , Infecções por Lentivirus/virologia , Lentivirus/genética , Subpopulações de Linfócitos T/fisiologia , Subpopulações de Linfócitos T/virologia , Animais , Complexo CD3/genética , Linhagem Celular Tumoral , Técnicas de Transferência de Genes , Engenharia Genética/métodos , Vetores Genéticos/genética , Proteínas de Fluorescência Verde/genética , Transplante de Células-Tronco Hematopoéticas/métodos , Inflamação/genética , Inflamação/virologia , Leucócitos/fisiologia , Leucócitos/virologia , Proteínas Luminescentes/genética , Camundongos , Camundongos Endogâmicos C57BL , Regiões Promotoras Genéticas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA