Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-37047467

RESUMO

The induction of natural defense mechanisms in plants is considered to be one of the most important strategies used in integrated pest management (IPM). Plant immune inducers could reduce the use of chemicals for plant protection and their harmful impacts on the environment. Planticine® is a natural plant defense biostimulant based on oligomers of α(1→4)-linked D-galacturonic acids, which are biodegradable and nontoxic. The aim of this study was to define the molecular basis of Planticine's biological activity and the efficacy of its use as a natural plant resistance inducer in greenhouse conditions. Three independent experiments with foliar application of Planticine® were carried out. The first experiment in a climatic chamber (control environment, no pest pressure) subjected the leaves to RNA-seq analysis, and the second and third experiments in greenhouse conditions focused on efficacy after a pest infestation. The result was the RNA sequencing of six transcriptome libraries of tomatoes treated with Planticine® and untreated plants; a total of 3089 genes were found to be differentially expressed genes (DEGs); among them, 1760 and 1329 were up-regulated and down-regulated, respectively. DEG analysis indicated its involvement in such metabolic pathways and processes as plant-pathogen interaction, plant hormone signal transduction, MAPK signaling pathway, photosynthesis, and regulation of transcription. We detected up-regulated gene-encoded elicitor and effector recognition receptors (ELRR and ERR), mitogen-activated protein kinase (MAPKs) genes, and transcription factors (TFs), i.e., WRKY, ERF, MYB, NAC, bZIP, pathogenesis-related proteins (PRPs), and resistance-related metabolite (RRMs) genes. In the greenhouse trials, foliar application of Planticine® proved to be effective in reducing the infestation of tomato leaves by the biotrophic pathogen powdery mildew and in reducing feeding by thrips, which are insect herbivores. Prophylactic and intervention use of Planticine® at low infestation levels allows the activation of plant defense mechanisms.


Assuntos
Solanum lycopersicum , Transcriptoma , Solanum lycopersicum/genética , Análise de Sequência de RNA , Reguladores de Crescimento de Plantas/farmacologia , Estresse Fisiológico , Regulação da Expressão Gênica de Plantas , Perfilação da Expressão Gênica , Doenças das Plantas/genética
2.
Insects ; 12(2)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540558

RESUMO

The efficacy of two strains of two Beauveria species (B. bassiana and B. brongniartii), individually or as co-inoculants, to control Melolontha sp. grubs was assessed in two organic strawberry plantations in relation to the environmental conditions, their abundance after soil inoculation, and their in vitro chitinolytic activity, thereby also verifying their impact on soil microbial communities. A reduction of the grubs' damage to strawberry plants was observed when compared to the untreated control in one plantation, irrespective of the strain used and whether they were applied as single or as co-inoculum. The metabolic pattern expressed by the two fungi in vitro was different: B. bassiana showed a higher metabolic versatility in the use of different carbon sources than B. brongniartii, whose profile was partly overlapped in the co-inoculum. Similar differences in the chitinolytic activity of each of the fungi and the co-inoculum were also pointed out. A higher abundance of B. bassiana in the soils receiving this species in comparison to those receiving B. brongniartii, together with its in vitro metabolic activity, could account for the observed diverse efficacy of pest damage control of the two species. However, environmental and climatic factors also affected the overall efficacy of the two bioinocula. According to the monitoring of the two species in soil, B. bassiana could be considered as a common native species in the studied locations in contrast to B. brongniartii, which seemed to be a non-endemic species. Nevertheless, the inoculation with both species or the co-inoculum did not consistently affect the soil microbial (fungi and bacteria) biodiversity, as expressed by the operational taxonomic unit (OTU) number and Shannon-Wiener diversity index based on terminal restriction fragment length polymorphism (TRFLP) data. A small transient increase of the share of the inoculated species to the total fungal community was noted by the analysis of genes copy numbers only for B. brongniartii at the end of the third growing season.

3.
Environ Manage ; 66(5): 916-929, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32815049

RESUMO

The analysis of 142 agricultural soil samples collected in organic farms across Poland with the intent to evaluate the level of DDT contamination resulted in more than 80% of the soils containing DDT. The ΣDDT (sum of all metabolites and isomers) concentration ranged between 0.005 and 0.383 mg/kg ΣDDT, with an average value of 0.064 mg/kg ΣDDT. However, the majority of plant samples collected from the crops growing on the sampled soils did not contain detectable DDT residues. The high DDT pollution levels detected in samples from four voivodeships (regions) among those monitored have been hypothesised to be linked to horticultural productions occurring to the sampled fields and typical of those regions, particularly in big-sized farms, during the period of DDT application, as well as the number of pesticides landfills present in these voivodeships. The elaboration of the o,p'-DDT/p,p'-DDT and DDT/(DDE + DDD) ratios to appraise the source or the period of contamination suggested that the contamination originated from past use of DDT rather than from impurities of more recent applications of other formulated substances. Such outcome thus suggests that the risk of contamination of organic products is likely derived from general environmental pollution levels rather than from the use of unauthorised substances in organic farming productions. Data from a trial with artificial contamination of soils indicated that using the DDT/(DDE + DDD) ratio in the presence of a low level of contamination could be less reliable than in highly contaminated soils.


Assuntos
Poluentes do Solo , Solo , DDT/análise , Monitoramento Ambiental , Agricultura Orgânica , Polônia , Poluentes do Solo/análise
4.
Front Microbiol ; 9: 1795, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30174655

RESUMO

Biochemical, physiological and genomic comparisons of two Pseudomonas strains, assigned previously to the Pseudomonas jessenii subgroup, which are efficient SDS-degraders were carried out. A GO enrichment analysis showed that the genomes of SDS-degraders encode more genes connected with bacterial cell wall biosynthesis and alkanesulfonate monooxygenase activity than their closest relatives from the P. jessenii subgroup. A transcriptomic analysis of the most promising strain exposed to detergent suggests that although SDS can be later utilized as a carbon source, in early stages it influences cell envelope integrity, causing a global stress response followed by cell wall modification and induction of repair mechanisms. Genomes of the analyzed strains from P. jessenii group encode multiple putative sulfatases and their enzymatic activity was experimentally verified, which led to the identification of three novel enzymes exhibiting activity toward SDS. Two of the novel alkylsulfatases showed their highest activity at pH 8.0 and the temperature of 60°C or 70°C. One of the enzymes retained its activity even after 1 h of incubation at 60°C. Ions like K+ and Mg2+ enhanced enzymatic activity of both proteins, whereas Cu2+ or EDTA had inhibitory effects.

5.
Syst Appl Microbiol ; 41(4): 348-354, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29752019

RESUMO

Pseudomonas are known from their flexible degradation capabilities and their engagement in xenobiotic biotransformation and bioremediation in habitats like soil, active sludge, plant surfaces, and freshwater or marine environments. Here we present taxonomic characterization of three efficient sodium dodecyl sulfate degrading strains: AP3_10, AP3_20 and AP3_22T belonging to the genus Pseudomonas, recently isolated from peaty soil used in a biological wastewater treatment plant. Sequence analyses of 16S rRNA and housekeeping genes: gyrB, rpoD and rpoB showed that the three closely related isolates classify within the Pseudomonas jessenii subgroup. ANIb or dDDH genomic comparisons of AP3_22T (type strain DSM 105098T=PCM 2904T) supported by biochemical tests showed that the isolates differ significantly from their closest relatives. The combined genotypic, phenotypic and chemotaxonomic data strongly support the classification of the three strains: AP3_10, AP3_20 and AP3_22T as a novel species of Pseudomonas, for which we propose the name Pseudomonas laurylsulfatovorans sp. nov. with AP3_22T as the type strain.


Assuntos
Pseudomonas , Dodecilsulfato de Sódio/metabolismo , Águas Residuárias/microbiologia , Purificação da Água , Composição de Bases , Biodegradação Ambiental , DNA Bacteriano/genética , Ácidos Graxos/análise , Genes Essenciais/genética , Tipagem Molecular , Filogenia , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Pseudomonas/metabolismo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo
6.
Syst Appl Microbiol ; 41(1): 13-22, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29153257

RESUMO

Microorganisms classified in to the Pseudomonas genus are a ubiquitous bacteria inhabiting variety of environmental niches and have been isolated from soil, sediment, water and different parts of higher organisms (plants and animals). Members of this genus are known for their metabolic versatility and are able to utilize different chemical compounds as a source of carbon, nitrogen or phosphorus, which makes them an interesting microorganism for bioremediation or bio-transformation. Moreover, Pseudomonas sp. has been described as a microorganism that can easily adapt to new environmental conditions due to its resistance to the presence of high concentrations of heavy metals or chemical pollution. Here we present the isolation and analysis of Pseudomonas silesiensis sp. nov. strain A3T isolated from peaty soil used in a biological wastewater treatment plant exploited by a pesticide packaging company. Phylogenetic MLSA analysis of 4 housekeeping genes (16S rRNA, gyrB, rpoD and rpoB), complete genome sequence comparison (ANIb, Tetranucleotide identity, digital DDH), FAME analysis, and other biochemical tests indicate the A3T strain (type strain PCM 2856T=DSM 103370T) differs significantly from the closest relative species and therefore represents a new species within the Pseudomonas genus. Moreover, bioinformatic analysis of the complete sequenced genome showed that it consists of 6,823,539bp with a 59.58mol% G+C content and does not contain any additional plasmids. Genome annotation predicted the presence of 6066 genes, of which 5875 are coding proteins and 96 are RNA genes.


Assuntos
Genoma Bacteriano , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Esgotos/microbiologia , Composição de Bases , Agentes de Controle Biológico , Análise por Conglomerados , DNA Girase/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , RNA Polimerases Dirigidas por DNA/genética , Poluentes Ambientais , Anotação de Sequência Molecular , Tipagem de Sequências Multilocus , Filogenia , Pseudomonas/genética , Pseudomonas/crescimento & desenvolvimento , RNA Ribossômico 16S/genética , Fator sigma/genética , Sequenciamento Completo do Genoma
7.
Front Microbiol ; 8: 1872, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163375

RESUMO

Due to their particular properties, detergents are widely used in household cleaning products, cosmetics, pharmaceuticals, and in agriculture as adjuvants tailoring the features of pesticides or other crop protection agents. The continuously growing use of these various products means that water soluble detergents have become one of the most problematic groups of pollutants for the aquatic and terrestrial environments. Thus it is important to identify bacteria having the ability to survive in the presence of large quantities of detergent and efficiently decompose it to non-surface active compounds. In this study, we used peaty soil sampled from a surface flow constructed wetland in a wastewater treatment plant to isolate bacteria that degrade sodium dodecyl sulfate (SDS). We identified and initially characterized 36 Pseudomonas spp. strains that varied significantly in their ability to use SDS as their sole carbon source. Five isolates having the closest taxonomic relationship to the Pseudomonas jessenii subgroup appeared to be the most efficient SDS degraders, decomposing from 80 to 100% of the SDS present in an initial concentration 1 g/L in less than 24 h. These isolates exhibited significant differences in degree of SDS degradation, their resistance to high detergent concentration (ranging from 2.5 g/L up to 10 g/L or higher), and in chemotaxis toward SDS on a plate test. Mass spectrometry revealed several SDS degradation products, 1-dodecanol being dominant; however, traces of dodecanal, 2-dodecanol, and 3-dodecanol were also observed, but no dodecanoic acid. Native polyacrylamide gel electrophoresis zymography revealed that all of the selected isolates possessed alkylsulfatase-like activity. Three isolates, AP3_10, AP3_20, and AP3_22, showed a single band on native PAGE zymography, that could be the result of alkylsulfatase activity, whereas for isolates AP3_16 and AP3_19 two bands were observed. Moreover, the AP3_22 strain exhibited a band in presence of both glucose and SDS, whereas in other isolates, the band was visible solely in presence of detergent in the culture medium. This suggests that these microorganisms isolated from peaty soil exhibit exceptional capabilities to survive in, and break down SDS, and they should be considered as a valuable source of biotechnological tools for future bioremediation and industrial applications.

8.
Genome Announc ; 5(39)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28963214

RESUMO

We present the draft genome sequence of Pseudomonas jessenii type strain DSM 17150. The assembly consists of 13 contigs, contains 6,537,206 bp, and has a GC content of 59.7%.

9.
Genome Announc ; 5(39)2017 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-28963215

RESUMO

Here, we report the draft genome sequence of Pseudomonas umsongensis type strain DSM 16611. The assembly consists of 14 contigs containing 6,701,403 bp with a GC content of 59.73%.

10.
Genome Announc ; 5(37)2017 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-28912333

RESUMO

We present here the draft genome sequence of Sphingopyxis bauzanensis DSM 22271. The assembly contains 4,258,005 bp in 28 scaffolds and has a GC content of 63.3%. A series of specific genes involved in the catabolism or transport of aromatic compounds was identified.

11.
Genome Announc ; 5(36)2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28883138

RESUMO

Here, we present the draft genome sequence of Sphingopyxis witflariensis strain DSM 14551. The assembly consists of 38 contigs and contains 4,306,761 bp, with a GC content of 63.3%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA