Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-28764991

RESUMO

Palaemonid shrimps exhibit numerous adaptive strategies, both in their life cycles and in biochemical, physiological, morphological and behavioral characteristics that reflect the wide variety of habitats in which they occur, including species that are of particular interest when analyzing adaptive osmoregulatory strategies. The present investigation evaluates the short- (hours) and long-term (days) time courses of responses of two palaemonid shrimps from separate yet overlapping osmotic niches, Palaemon northropi (marine) and Macrobrachium acanthurus (diadromous, fresh water), to differential salinity challenges at distinct levels of structural organization: (i) transcriptional, analyzing quantitative expression of gill mRNAs that encode for subunits of the Na+/K+-ATPase and V(H+)-ATPase ion transporters; (ii) translational, examining the kinetic behavior of gill Na+/K+-ATPase specific activity; and (iii) systemic, accompanying consequent adjustment of hemolymph osmolality. Palaemon northropi is an excellent hyper-hypo-osmoregulator in dilute and concentrated seawater, respectively. Macrobrachium acanthurus is a strong hyper-regulator in fresh water and hypo-regulates hemolymph osmolality and particularly [Cl-] in brackish water. Hemolymph hyper-regulation in fresh water (Macrobrachium acanthurus) and dilute seawater (Palaemon northropi) is underlain by augmented expression of both the gill Na+/K+-ATPase and V(H+)-ATPase. In contrast, in neither species is hypo-regulation sustained by changes in Na+/K+-ATPase mRNA expression levels, but rather by regulating enzyme specific activity. The integrated time course of Na+/K+- and V(H+)-ATPase expression and Na+/K+-ATPase activity in the gills of these palaemonid shrimps during acclimation to different salinities reveals versatility in their levels of regulation, and in the roles of these ion transporting pumps in sustaining processes of hyper- and hypo-osmotic and chloride regulation.


Assuntos
Concentração Osmolar , Palaemonidae/fisiologia , Biossíntese de Proteínas , Transcrição Gênica , Adenosina Trifosfatases/metabolismo , Animais , Brânquias/metabolismo , Reação em Cadeia da Polimerase
2.
Int J Mol Sci ; 17(5)2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-27164083

RESUMO

Laccase production by Pycnoporus sanguineus RP15 grown in wheat bran and corncob under solid-state fermentation was optimized by response surface methodology using a Central Composite Rotational Design. A laccase (Lacps1) was purified and characterized and the potential of the pure Lacps1 and the crude culture extract for synthetic dye decolorization was evaluated. At optimal conditions (eight days, 26 °C, 18% (w/w) milled corncob, 0.8% (w/w) NH4Cl and 50 mmol·L(-1) CuSO4, initial moisture 4.1 mL·g(-1)), the laccase activity reached 138.6 ± 13.2 U·g(-1). Lacps1 was a monomeric glycoprotein (67 kDa, 24% carbohydrate). Optimum pH and temperature for the oxidation of 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonate) (ABTS) were 4.4 and 74.4 °C, respectively. Lacps1 was stable at pH 3.0-8.0, and after two hours at 55-60 °C, presenting high redox potential (0.747 V vs. NHE). ABTS was oxidized with an apparent affinity constant of 147.0 ± 6.4 µmol·L(-1), maximum velocity of 413.4 ± 21.2 U·mg(-1) and catalytic efficiency of 3140.1 ± 149.6 L·mmol(-1)·s(-1). The maximum decolorization percentages of bromophenol blue (BPB), remazol brilliant blue R and reactive blue 4 (RB4), at 25 or 40 °C without redox mediators, reached 90%, 80% and 60%, respectively, using either pure Lacps1 or the crude extract. This is the first study of the decolorization of BPB and RB4 by a P. sanguineus laccase. The data suggested good potential for treatment of industrial dye-containing effluents.


Assuntos
Corantes/química , Proteínas Fúngicas/metabolismo , Lacase/metabolismo , Pycnoporus/enzimologia , Benzotiazóis/química , Fermentação , Oxirredução , Pycnoporus/crescimento & desenvolvimento , Ácidos Sulfônicos/química
3.
Int J Mol Sci ; 14(2): 2875-902, 2013 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-23364611

RESUMO

Efficient, low-cost enzymatic hydrolysis of lignocellulosic residues is essential for cost-effective production of bioethanol. The production of ß-glucosidase, ß-xylosidase and xylanase by Colletotrichum graminicola was optimized using Response Surface Methodology (RSM). Maximal production occurred in wheat bran. Sugarcane trash, peanut hulls and corncob enhanced ß-glucosidase, ß-xylosidase and xylanase production, respectively. Maximal levels after optimization reached 159.3 ± 12.7 U g-1, 128.1 ± 6.4 U g-1 and 378.1 ± 23.3 U g-1, respectively, but the enzymes were produced simultaneously at good levels under culture conditions optimized for each one of them. Optima of pH and temperature were 5.0 and 65 °C for the three enzymes, which maintained full activity for 72 h at 50 °C and for 120 min at 60 °C (ß-glucosidase) or 65 °C (ß-xylosidase and xylanase). Mixed with Trichoderma reesei cellulases, C. graminicola crude extract hydrolyzed raw sugarcane trash with glucose yield of 33.1% after 48 h, demonstrating good potential to compose efficient cocktails for lignocellulosic materials hydrolysis.

4.
J Exp Biol ; 213(Pt 22): 3894-905, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-21037069

RESUMO

We evaluate osmotic and chloride (Cl(-)) regulatory capability in the diadromous shrimp Macrobrachium amazonicum, and the accompanying alterations in hemolymph osmolality and [Cl(-)], gill Na(+)/K(+)-ATPase activity, and expression of gill Na(+)/K(+)-ATPase α-subunit and V-ATPase B subunit mRNA during salinity (S) acclimation. We also characterize V-ATPase kinetics and the organization of transport-related membrane systems in the gill epithelium. Macrobrachium amazonicum strongly hyper-regulates hemolymph osmolality and [Cl(-)] in freshwater and in salinities up to 25‰ S. During a 10-day acclimation period to 25‰ S, hemolymph became isosmotic and hypo-chloremic after 5 days, [Cl(-)] alone remaining hyporegulated thereafter. Gill Na(+)/K(+)-ATPase α-subunit mRNA expression increased 6.5 times initial values after 1 h, then decreased to 3 to 4 times initial values by 24 h and to 1.5 times initial values after 10 days at 25‰ S. This increased expression was accompanied by a sharp decrease at 5 h then recovery of initial Na(+)/K(+)-ATPase activity within 24 h, declining again after 5 days, which suggests transient Cl(-) secretion. V-ATPase B-subunit mRNA expression increased 1.5-fold within 1 h, then reduced sharply to 0.3 times initial values by 5 h, and remained unchanged for the remainder of the 10-day period. V-ATPase activity dropped sharply and was negligible after a 10-day acclimation period to 21‰ S, revealing a marked downregulation of ion uptake mechanisms. The gill epithelium consists of thick, apical pillar cell flanges, the perikarya of which are coupled to an intralamellar septum. These two cell types respectively exhibit extensive apical evaginations and deep membrane invaginations, both of which are associated with numerous mitochondria, characterizing an ion transporting epithelium. These changes in Na(+)/K(+)- and V-ATPase activities and in mRNA expression during salinity acclimation appear to underpin ion uptake and Cl(-) secretion by the palaemonid shrimp gill.


Assuntos
Brânquias/metabolismo , Palaemonidae/genética , Palaemonidae/metabolismo , ATPase Trocadora de Sódio-Potássio/genética , ATPase Trocadora de Sódio-Potássio/metabolismo , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Aclimatação/genética , Aclimatação/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Cloretos/metabolismo , Primers do DNA/genética , Expressão Gênica , Brânquias/ultraestrutura , Hemolinfa/metabolismo , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Palaemonidae/anatomia & histologia , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Salinidade , Homologia de Sequência de Aminoácidos , ATPases Vacuolares Próton-Translocadoras/química , Equilíbrio Hidroeletrolítico/genética , Equilíbrio Hidroeletrolítico/fisiologia
5.
Biochem Mol Biol Educ ; 38(4): 276-9, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21567843

RESUMO

An Adobe® animation is presented for use in undergraduate Biochemistry courses, illustrating the mechanism of Na(+) and K(+) translocation coupled to ATP hydrolysis by the (Na, K)-ATPase, a P(2c) -type ATPase, or ATP-powered ion pump that actively translocates cations across plasma membranes. The enzyme is also known as an E(1) /E(2) -ATPase as it undergoes conformational changes between the E(1) and E(2) forms during the pumping cycle, altering the affinity and accessibility of the transmembrane ion-binding sites. The animation is based on Horisberger's scheme that incorporates the most recent significant findings to have improved our understanding of the (Na, K)-ATPase structure-function relationship. The movements of the various domains within the (Na, K)-ATPase α-subunit illustrate the conformational changes that occur during Na(+) and K(+) translocation across the membrane and emphasize involvement of the actuator, nucleotide, and phosphorylation domains, that is, the "core engine" of the pump, with respect to ATP binding, cation transport, and ADP and P(i) release.

6.
Artigo em Inglês | MEDLINE | ID: mdl-19535031

RESUMO

This investigation provides an extensive characterization of the modulation by ATP, Mg(2+), Na(+), K(+) and NH(4)(+) of a gill microsomal (Na(+),K(+))-ATPase from Callinectes danae acclimated to 15 per thousand salinity. Novel findings are the lack of high-affinity ATP-binding sites and a 10-fold increase in enzyme affinity for K(+) modulated by NH(4)(+), discussed regarding NH(4)(+) excretion in benthic marine crabs. The (Na(+),K(+))-ATPase hydrolyzed ATP at a maximum rate of 298.7+/-16.7 nmol Pi min(-1) mg(-1) and K(0.5)=174.2+/-9.8 mmol L(-1), obeying cooperative kinetics (n(H)=1.2). Stimulation by sodium (V=308.9+/-15.7 nmol Pi min(-1) mg(-1), K(0.5)=7.8+/-0.4 mmol L(-1)), magnesium (299.2+/-14.1 nmol Pi min(-1) mg(-1), K(0.5)=767.3+/-36.1 mmol L(-1)), potassium (300.6+/-15.3 nmol Pi min(-1) mg(-1), K(0.5)=1.6+/-0.08 mmol L(-1)) and ammonium (V=345.1+/-19.0 nmol Pi min(-1) mg(-1), K(0.5)=6.0+/-0.3 mmol L(-1)) ions showed site-site interactions. Ouabain inhibited (Na(+),K(+))-ATPase activity with K(I)=45.1+/-2.5 micromol L(-1), although affinity for the inhibitor increased (K(I)=22.7+/-1.1 micromol L(-1)) in 50 mmol L(-1) NH(4)(+). Inhibition assays using ouabain plus oligomycin or ethacrynic acid suggest mitochondrial F(0)F(1)- and K(+)-ATPase activities, respectively. Ammonium and potassium ions synergistically stimulated specific activity up to 72%, inferring that these ions bind to different sites on the enzyme molecule, each modulating stimulation by the other.


Assuntos
Aclimatação/fisiologia , Amônia/metabolismo , Braquiúros/enzimologia , Braquiúros/fisiologia , Brânquias/enzimologia , Microssomos/enzimologia , Salinidade , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Especificidade da Espécie
7.
Artigo em Inglês | MEDLINE | ID: mdl-19422928

RESUMO

We evaluate hemolymph osmotic and ionic regulatory abilities and characterize a posterior gill microsomal (Na+, K+)-ATPase from the marine swimming crab, Callinectes ornatus, acclimated to 21 per thousand or 33 per thousand salinity. C. ornatus is isosmotic after acclimation to 21 per thousand but is hyposmotic at 33 per thousand salinity; hemolymph ions do not recover initial levels on acclimation to 21 per thousand salinity but are anisoionic compared to ambient concentrations, revealing modest regulatory ability. NH4+ modulates enzyme affinity for K+, which increases 187-fold in crabs acclimated to 33 per thousand salinity. The (Na+, K+)-ATPase redistributes into membrane fractions of different densities, suggesting that altered membrane composition results from salinity acclimation. ATP was hydrolyzed at maximum rates of 182.6 +/- 7.1 nmol Pi min(-1) mg(-1) (21 per thousand) and 76.2 +/- 3.5 nmol Pi min(-1) mg(-1) (33 per thousand), with little change in KM values (approximately 50 micromol L(-1)). K+ together with NH4+ synergistically stimulated activity to maximum rates of approximately 240 nmol Pi min(-1) mg(-1). KI values for ouabain inhibition (approximately 110 micromol L(-1)) decreased to 44.9 +/- 1.0 micromol L(-1) (21 per thousand) and 28.8 +/- 1.3 micromol L(-1) (33 per thousand) in the presence of both K+ and NH4+. Assays employing various inhibitors suggest the presence of mitochondrial F0F1-, and K+- and V-ATPase activities in the gill microsomes.


Assuntos
Braquiúros/fisiologia , Brânquias/enzimologia , Hemolinfa/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Aclimatação/efeitos dos fármacos , Adaptação Fisiológica , Animais , Concentração Osmolar , Ouabaína/farmacologia , Potássio/farmacologia , Compostos de Amônio Quaternário/farmacologia , Salinidade , ATPase Trocadora de Sódio-Potássio/antagonistas & inibidores
8.
J Phys Chem B ; 113(21): 7491-7, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19415915

RESUMO

Proteins incorporated into phospholipid Langmuir-Blodgett (LB) films are a good model system for biomembranes and enzyme immobilization studies. The specific fluidity of biomembranes, an important requisite for enzymatic activity, is naturally controlled by varying phospholipid compositions. In a model system, instead, LB film fluidity may be varied by covering the top layer with different substances able to interact simultaneously with the phospholipid and the protein to be immobilized. In this study, we immobilized a carbohydrate rich Neurospora crassa alkaline phosphatase (NCAP) in monolayers of the sodium salt of dihexadecylphosphoric acid (DHP), a synthetic phospholipid that provides very condensed Langmuir films. The binding of NCAP to DHP Langmuir-Blodgett (LB) films was mediated by the anionic polysaccharide iota-carrageenan (iota-car). Combining results from surface isotherms and the quartz crystal microbalance technique, we concluded that the polysaccharide was essential to promote the interaction between DHP and NCAP and also to increase the fluidity of the film. An estimate of DHP:iota-car ratio within the film also revealed that the polysaccharide binds to DHP LB film in an extended conformation. Furthermore, the investigation of the polysaccharide conformation at molecular level, using sum-frequency vibrational spectroscopy (SFG), indicated a preferential conformation of the carrageenan molecules with the sulfate groups oriented toward the phospholipid monolayer, and both the hydroxyl and ether groups interacting preferentially with the protein. These results demonstrate how interfacial electric fields can reorient and induce conformational changes in macromolecules, which may significantly affect intermolecular interactions at interfaces. This detailed knowledge of the interaction mechanism between the enzyme and the LB film is relevant to design strategies for enzyme immobilization when orientation and fluidity properties of the film provided by the matrix are important to improve enzymatic activity.


Assuntos
Fosfatase Alcalina/química , Carragenina/química , Enzimas Imobilizadas/química , Membranas Artificiais , Fosfolipídeos/química , Fluidez de Membrana , Neurospora crassa/enzimologia , Análise Espectral , Propriedades de Superfície
9.
J Membr Biol ; 224(1-3): 33-44, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18841405

RESUMO

We have characterized the kinetic properties of ectonucleoside triphosphate diphosphohydrolase 1 (E-NTPDase1) from rat osseous plate membranes. A novel finding of the present study is that the solubilized enzyme shows high- and low-affinity sites for the substrate in contrast with a single substrate site for the membrane-bound enzyme. In addition, contrary to the Michaelian chraracteristics of the membrane-bound enzyme, the site-site interactions after solubilization with 0.5% digitonin plus 0.1% lysolecithin resulted in a less active ectonucleoside triphosphate diphosphohydrolase, showing activity of about 398.3 nmol Pi min(-1) mg(-1). The solubilized enzyme has M (r) of 66-72 kDa, and its catalytic efficiency was significantly increased by magnesium and calcium ions; but the ATP/ADP activity ratio was always <2.0. Partial purification and kinetic characterization of the rat osseous plate E-NTPDase1 in a solubilized form may lead to a better understanding of a possible function of the enzyme as a modulator of nucleotidase activity or purinergic signaling in matrix vesicle membranes. The simple procedure to obtain the enzyme in a solubilized form may also be attractive for comparative studies of particular features of the active sites from this and other ATPases.


Assuntos
Antígenos CD/metabolismo , Apirase/metabolismo , Membrana Celular/enzimologia , Lâmina de Crescimento/enzimologia , Íons/química , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Antígenos CD/química , Apirase/química , Western Blotting , Cálcio/farmacologia , Membrana Celular/química , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Cinética , Lisofosfatidilcolinas/química , Magnésio/farmacologia , Ligação Proteica , Ratos , Especificidade por Substrato
10.
J Colloid Interface Sci ; 320(2): 476-82, 2008 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-18280491

RESUMO

A glycosylphosphatidylinositol (GPI)-anchored enzyme (rat osseous plate alkaline phosphatase-OAP) was studied as monolayer (pure and mixed with lipids) at the air-water interface. Surface pressure and surface potential-area isotherms showed that the enzyme forms a stable monolayer and exhibits a liquid-expanded state even at surface pressure as high as 30 mN m(-1). Isotherms for mixed dimyristoylphosphatidic acid (DMPA)-OAP monolayer showed the absence of a liquid-expanded/liquid-condensed phase transition as observed for pure DMPA monolayer. In both cases, pure or mixed monolayer, the enzyme preserves its native conformation under compression at the air-water interface as observed from in situ p-polarized light Fourier transform-infrared reflection-absorption spectroscopic (FT-IRRAS) measurements. Changes in orientation and conformation of the enzyme due to the presence or absence of DMPA, as well as due to the surface compression, are discussed.


Assuntos
Fosfatase Alcalina/química , Glicerofosfolipídeos/química , Glicosilfosfatidilinositóis/química , Membranas Artificiais , Transição de Fase , Fosfatase Alcalina/isolamento & purificação , Animais , Glicosilfosfatidilinositóis/isolamento & purificação , Ratos , Espectrofotometria Infravermelho
11.
Artigo em Inglês | MEDLINE | ID: mdl-16931080

RESUMO

To better comprehend the role of gill ion regulatory mechanisms, the modulation by Na(+), K(+), NH(4)(+) and ATP of (Na(+), K(+))-ATPase activity was examined in a posterior gill microsomal fraction from the hermit crab, Clibanarius vittatus. Under saturating Mg(2+), Na(+) and K(+) concentrations, two well-defined ATP hydrolyzing sites were revealed. ATP was hydrolyzed at the high-affinity sites at a maximum rate of V=19.1+/-0.8 U mg(-1) and K(0.5)=63.8+/-2.9 nmol L(-1), obeying cooperative kinetics (n(H)=1.9); at the low-affinity sites, hydrolysis obeyed Michaelis-Menten kinetics with K(M)=44.1+/-2.6 mumol L(-1) and V=123.5+/-6.1 U mg(-1). Stimulation by Na(+) (V=149.0+/-7.4 U mg(-1); K(M)=7.4+/-0.4 mmol L(-1)), Mg(2+) (V=132.0+/-5.3 U mg(-1); K(0.5)=0.36+/-0.02 mmol L(-1)), NH(4)(+) (V=245.6+/-9.8 U mg(-1); K(M)=4.5+/-0.2 mmol L(-1)) and K(+) (V=140.0+/-4.9 U mg(-1); K(M)=1.5+/-0.1 mmol L(-1)) followed a single saturation curve and, except for Mg(2+), obeyed Michaelis-Menten kinetics. Under optimal ionic conditions, but in the absence of NH(4)(+), ouabain (K(I)=117.3+/-3.5 mumol L(-1)) and orthovanadate inhibited up to 67% of the ATPase activity. The inhibition studies performed suggest the presence of F(0)F(1), V- and P-ATPases, but not Na(+)-, K(+)- or Ca(2+)-ATPases as contaminants in the gill microsomal preparation. (Na(+), K(+))-ATPase activity was synergistically modulated by NH(4)(+) and K(+). At 20 mmol L(-1) K(+), a maximum rate of V=290.8+/-14.5 U mg(-1) was seen as NH(4)(+) concentration was increased up to 50 mmol L(-1). However, at fixed NH(4)(+) concentrations, no additional stimulation was found for increasing K(+) concentrations (V=135.2+/-4.1 U mg(-1) and V=236.6+/-9.5 U mg(-1) and for 10 and 30 mmol L(-1) NH(4)(+), respectively). This is the first report to detail ionic modulation of gill (Na(+), K(+))-ATPase in C. vittatus, revealing an asymmetrical, synergistic stimulation of the enzyme by K(+) and NH(4)(+), as yet undescribed for other (Na(+), K(+))-ATPases, and should provide a better understanding of NH(4)(+) excretion in pagurid crabs.


Assuntos
Amônia/metabolismo , Anomuros/metabolismo , Brânquias/enzimologia , ATPase Trocadora de Sódio-Potássio/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Anomuros/enzimologia , Cinética , Microssomos/enzimologia , Ouabaína/farmacologia , Potássio/metabolismo , Sódio/metabolismo , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/efeitos dos fármacos , Vanadatos/farmacologia
12.
Colloids Surf B Biointerfaces ; 46(4): 248-54, 2005 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-16356698

RESUMO

This work investigates the process of incorporation of a glycosylphosphatidyl inositol (GPI)-anchored alkaline phosphatase into Langmuir monolayers of dimyristoyl phosphatidic acid (DMPA). Three different methods of protein incorporation were assayed. When the protein solution was injected below the air-water interface after formation of the lipid monolayer a micro-heterogeneous distribution of alkaline phosphatase throughout the interface was observed. Adsorption kinetics studied by fluorescence microscopy, associated with surface pressure measurements, led to the proposition of a model in which the protein penetration is modulated by the surface packing of the monolayer and intermolecular interactions occurring between the phospholipid and the protein. At initial surface pressures higher than 20 m Nm(-1), the protein is quickly adsorbed on the interface and the lateral diffusion drives the alkyl chains to turn towards the air phase while the polypeptide moiety faces the aqueous subphase.


Assuntos
Fosfatase Alcalina/química , Glicosilfosfatidilinositóis/química , Membranas Artificiais , Adsorção , Animais , Glicerofosfolipídeos/química , Tamanho da Partícula , Ratos , Propriedades de Superfície , Fatores de Tempo
13.
Langmuir ; 21(9): 4090-5, 2005 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-15835979

RESUMO

The catalytic activity of a glycosylphosphatidylinositol (GPI)-anchored alkaline phosphatase has been studied in Langmuir phospholipid monolayers at different surface pressures. The enzyme substrate, p-nitrophenyl phosphate, was injected into the subphase of mixed enzyme/lipid Langmuir monolayers. Its hydrolysis product was followed by monitoring the absorbance at 410 nm in situ in the monolayer subphase of the Langmuir trough. Several surface pressures, corresponding to different molecular surface densities, were attained by lateral compression of the monolayers. The morphology of the monolayers, observed by fluorescence microscopy, showed three different types of domains owing to the heterogeneous partition of the enzyme within the mixed enzyme/lipid film. The catalytic activity was modulated by the enzyme surface density, and it increased until a pressure of 18 mN/m was reached, but it decreased significantly when the equilibrium in-plane elasticity (surface compressional modulus) increased more noticeably, resulting in alterations in the interface morphology. A model for the modulation of the enzyme orientation and catalytic activity by lipid/enzyme surface morphology and enzyme surface packing at the air/liquid interface is proposed. The results might have an important impact on the comprehension of the enzymatic activity regulation of GPI-anchored proteins in biomembranes.


Assuntos
Fosfatase Alcalina/química , Glicosilfosfatidilinositóis/química , Membranas Artificiais , Ar , Fosfatase Alcalina/metabolismo , Sítios de Ligação , Catálise , Elasticidade , Glicosilfosfatidilinositóis/metabolismo , Hidrólise , Microscopia de Fluorescência , Nitrofenóis/química , Nitrofenóis/metabolismo , Compostos Organofosforados/química , Compostos Organofosforados/metabolismo , Conformação Proteica , Propriedades de Superfície
14.
Mol Cell Biochem ; 267(1-2): 99-106, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15663191

RESUMO

We report the kinetic characterization of an ecto-nucleosidetriphosphate diphosphohydrolase 1 from rat osseous plate membranes in streptozotocin-induced diabetic rats, which arises during ectopic mineralization twenty days after a subcutaneous implantation of demineralized bone matrix, Insulin deficiency decreased the ecto-nucleoside triphosphate diphosphohydrolase activity from 1293.1 +/- 39.8 (control rats) to 556.0 +/- 8.2 nmol Pi/(min mg). Two families of ATP hydrolyzing sites showed cooperative effects with specific activities of 256.2 +/- 7.7 nmol Pi/(min mg) and 299.8 +/- 8.9 nmol Pi/(min mg), and studies on the stimulation of the enzyme by magnesium and calcium ions showed that the decrease in enzyme activity results from changes in the affinity of the enzyme for these ions. To our knowledge this is the first study associating the effects of type I diabetes with an ecto-nucleoside triphosphate diphosphohydrolase activity from rat osseous plate membranes.


Assuntos
Adenosina Trifosfatases/metabolismo , Diabetes Mellitus Experimental/metabolismo , Lâmina de Crescimento/enzimologia , Animais , Cálcio/farmacologia , Insulina/deficiência , Cinética , Magnésio/farmacologia , Masculino , Ratos , Ratos Wistar
15.
Biochim Biophys Acta ; 1646(1-2): 216-25, 2003 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-12637029

RESUMO

An ectonucleoside triphosphate diphosphohydrolase 1 (NTPDase1) activity present in alkaline phosphatase-depleted rat osseous plate membranes, obtained 14 days after implantation of demineralized bone particles in the subcutaneous tissue of Wistar rats, was characterized. At pH 7.5, NTPDase1 hydrolyzed nucleotide triphosphates at rates 2.4-fold higher than those of nucleotide diphosphates, while the hydrolysis of nucleotide monophosphates and non-nucleotide phosphates was negligible. NTPDase 1 hydrolyzed ATP and ADP following Michaelis-Menten kinetics with V=1278.7+/-38.4 nmol Pi/min/mg and K(M)=83.3+/-2.5 microM and V=473.9+/-18.9 nmol Pi/min/mg and K(M)=150.6+/-6.0 microM, respectively, but in the absence of magnesium and calcium ions, ATP or ADP hydrolysis was negligible. The stimulation of the NTPDase1 by calcium (V=1084.7+/-32.5 nmol Pi/min/mg; and K(M)=377.8+/-11.3 microM) and magnesium (V=1367.2+/-41.0 nmol Pi/min/mg and K(M)=595.3+/-17.8 microM) ions suggested that each ion could replace the other during the catalytic cycle of the enzyme. Oligomycin, ouabain, bafilomycin A(1), theophylline, thapsigargin, ethacrynic acid, P(1),P(5)-(adenosine-5')-pentaphosphate and omeprazole had negligible effects on the hydrolysis of ATP and ADP by NTPDase1. However, suramin and sodium azide were effective inhibitors of ATP and ADP hydrolysis. To our knowledge this is the first report suggesting the presence of NTPDase1 in rat osseous plate membranes. Considering that the ectonucleoside triphosphate diphosphohydrolase family of enzymes participates in many regulatory functions, such as response to hormones, growth control, and cell differentiation, the present observations raise interesting questions about the participation of this activity in the calcification process.


Assuntos
Apirase/metabolismo , Lâmina de Crescimento/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Alameticina/farmacologia , Fosfatase Alcalina/deficiência , Animais , Antígenos CD , Apirase/antagonistas & inibidores , Apirase/química , Sítios de Ligação , Calcificação Fisiológica , Cálcio , Catálise/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Magnésio , Membranas/enzimologia , Ratos , Especificidade por Substrato
16.
Mol Cell Biochem ; 241(1-2): 69-79, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12482027

RESUMO

Collagenase treatment, commonly used to prepare alkaline phosphatase-rich matrix vesicles from epiphyseal cartilage growth plates, seems to affect the integrity of this membrane-bound enzyme. Alkaline phosphatase-rich rat osseous plates were incubated with 1,000 U/mL collagenase for 3 h, at 37 degrees C and after purification on Sepharose 4B, kinetic studies were performed using nitrophenylphosphate and pyrophosphate as substrates. The optimum apparent pH for the hydrolysis of p-nitrophenylphosphate and pyrophosphate increased from 9.4 to 10.25 and from 8.0 to 9.0, respectively, as a consequence ofcollagenase treatment. In the absence of Mg2+ ions, the enzyme hydrolyzed PNPP with KM = 322.5 +/- 15.3 microM and V = 965.2 +/- 45.8 U/mg, while in the presence of 2 mM Mg2+ ions, V increased 66%. Cobalt (K0.5 = 5.3 +/- 0.3 microM) and manganese (K0.5 = 0.72 +/- 0.03 microM) ions stimulated the PNPPase activity of the collagenase-treated enzyme, but with a lower apparent affinity when compared with that of not-treated enzyme. In the absence of Mg2+ ions pyrophosphate was hydrolyzed according to Michaelis-Menten kinetics (KM = 105.1 +/- 6.3 microM and V = 64.9 +/- 3.9 U/mg), but site-site interactions (nH = 1.2) were observed in the presence of 2 mM Mg2+ ions (V = 110.8 +/- 5.5 U/mg; K0.5 = 42.7 +/- 2.0 microM). To our knowledge this is the first report showing significant alterations on phosphohydrolytic activity and metal binding properties of bone alkaline phosphatase due to associated neutral proteases in collagenase preparations often used for the isolation of matrix vesicles.


Assuntos
Fosfatase Alcalina/metabolismo , Difosfatos/metabolismo , Endopeptidases/metabolismo , Lâmina de Crescimento/enzimologia , Nitrofenóis/metabolismo , Compostos Organofosforados/metabolismo , Animais , Hidrólise , Cinética , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA