Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
2.
Cell Host Microbe ; 23(1): 54-64.e6, 2018 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-29276172

RESUMO

During Salmonella-induced gastroenteritis, mucosal inflammation creates a niche that favors the expansion of the pathogen population over the microbiota. Here, we show that Salmonella Typhimurium infection was accompanied by dysbiosis, decreased butyrate levels, and substantially elevated lactate levels in the gut lumen. Administration of a lactate dehydrogenase inhibitor blunted lactate production in germ-free mice, suggesting that lactate was predominantly of host origin. Depletion of butyrate-producing Clostridia, either through oral antibiotic treatment or as part of the pathogen-induced dysbiosis, triggered a switch in host cells from oxidative metabolism to lactate fermentation, increasing both lactate levels and Salmonella lactate utilization. Administration of tributyrin or a PPARγ agonist diminished host lactate production and abrogated the fitness advantage conferred on Salmonella by lactate utilization. We conclude that alterations of the gut microbiota, specifically a depletion of Clostridia, reprogram host metabolism to perform lactate fermentation, thus supporting Salmonella infection.


Assuntos
Clostridium/crescimento & desenvolvimento , Disbiose/microbiologia , Gastroenterite/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Mucosa Intestinal/microbiologia , Ácido Láctico/metabolismo , Salmonella typhimurium/metabolismo , Animais , Antibacterianos/farmacologia , Ácido Butírico/metabolismo , Feminino , Fermentação , Gastroenterite/patologia , L-Lactato Desidrogenase/antagonistas & inibidores , Masculino , Camundongos , Camundongos Endogâmicos C57BL , PPAR gama/agonistas , Infecções por Salmonella/patologia , Salmonella typhimurium/crescimento & desenvolvimento , Triglicerídeos/farmacologia
3.
Cell Host Microbe ; 22(3): 291-301.e6, 2017 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-28844888

RESUMO

The mucosal inflammatory response induced by Salmonella serovar Typhimurium creates a favorable niche for this gut pathogen. Conventional wisdom holds that S. Typhimurium undergoes an incomplete tricarboxylic acid (TCA) cycle in the anaerobic mammalian gut. One change during S. Typhimurium-induced inflammation is the production of oxidized compounds by infiltrating neutrophils. We show that inflammation-derived electron acceptors induce a complete, oxidative TCA cycle in S. Typhimurium, allowing the bacteria to compete with the microbiota for colonization. A complete TCA cycle facilitates utilization of the microbiota-derived fermentation product succinate as a carbon source. S. Typhimurium succinate utilization genes contribute to efficient colonization in conventionally raised mice, but provide no growth advantage in germ-free mice. Mono-association of gnotobiotic mice with Bacteroides, a major succinate producer, restores succinate utilization in S. Typhimurium. Thus, oxidative central metabolism enables S. Typhimurium to utilize a variety of carbon sources, including microbiota-derived succinate.


Assuntos
Bactérias/metabolismo , Bacteroides/metabolismo , Colite/microbiologia , Microbioma Gastrointestinal , Infecções por Salmonella/microbiologia , Salmonella typhimurium/metabolismo , Ácido Succínico/metabolismo , Animais , Bactérias/genética , Bactérias/isolamento & purificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Ciclo do Ácido Cítrico , Colite/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos CBA , Estresse Oxidativo , Infecções por Salmonella/metabolismo , Salmonella typhimurium/genética
4.
Cell Host Microbe ; 21(2): 208-219, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28182951

RESUMO

Intestinal inflammation is frequently associated with an alteration of the gut microbiota, termed dysbiosis, which is characterized by a reduced abundance of obligate anaerobic bacteria and an expansion of facultative Proteobacteria such as commensal E. coli. The mechanisms enabling the outgrowth of Proteobacteria during inflammation are incompletely understood. Metagenomic sequencing revealed bacterial formate oxidation and aerobic respiration to be overrepresented metabolic pathways in a chemically induced murine model of colitis. Dysbiosis was accompanied by increased formate levels in the gut lumen. Formate was of microbial origin since no formate was detected in germ-free mice. Complementary studies using commensal E. coli strains as model organisms indicated that formate dehydrogenase and terminal oxidase genes provided a fitness advantage in murine models of colitis. In vivo, formate served as electron donor in conjunction with oxygen as the terminal electron acceptor. This work identifies bacterial formate oxidation and oxygen respiration as metabolic signatures for inflammation-associated dysbiosis.


Assuntos
Disbiose/microbiologia , Escherichia coli/metabolismo , Formiatos/metabolismo , Inflamação/microbiologia , Animais , Colite/microbiologia , Modelos Animais de Doenças , Feminino , Microbioma Gastrointestinal , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Proteobactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA