Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Front Zool ; 16: 33, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31406495

RESUMO

BACKGROUND: Monogononta is a large clade of rotifers comprised of diverse morphological forms found in a wide range of ecological habitats. Most monogonont species display cyclical parthenogenesis, where generations of asexually reproducing females are interspaced by mixis events when sexual reproduction occurs between mictic females and dwarf, haploid males. The morphology of monogonont feeding females is relatively well described, however data on male anatomy are very limited. Thus far, male musculature of only two species has been described with confocal laser scanning microscopy (CLSM) and it remains unknown how dwarfism influences the neuroanatomy of males on detailed level. RESULTS: Here, we provide a CLSM-based description of the nervous system of both sexes of Epiphanes senta, a freshwater monogonont rotifer. The general nervous system architecture is similar between males and females and shows a similar level of complexity. However, the nervous system in males is more compact and lacks a stomatogastric part. CONCLUSION: Comparison of the neuroanatomy between male and normal-sized feeding females provides a better understanding of the nature of male dwarfism in Monogononta. We propose that dwarfism of monogonont non-feeding males is the result of a specific case of heterochrony, called "proportional dwarfism" as they, due to their inability to feed, retain a juvenile body size, but still develop a complex neural architecture comparable to adult females. Reduction of the stomatogastric nervous system in the males correlates with the loss of the entire digestive tract and associated morphological structures.

2.
Nature ; 553(7686): 45-50, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29236686

RESUMO

It has been hypothesized that a condensed nervous system with a medial ventral nerve cord is an ancestral character of Bilateria. The presence of similar dorsoventral molecular patterns along the nerve cords of vertebrates, flies, and an annelid has been interpreted as support for this scenario. Whether these similarities are generally found across the diversity of bilaterian neuroanatomies is unclear, and thus the evolutionary history of the nervous system is still contentious. Here we study representatives of Xenacoelomorpha, Rotifera, Nemertea, Brachiopoda, and Annelida to assess the conservation of the dorsoventral nerve cord patterning. None of the studied species show a conserved dorsoventral molecular regionalization of their nerve cords, not even the annelid Owenia fusiformis, whose trunk neuroanatomy parallels that of vertebrates and flies. Our findings restrict the use of molecular patterns to explain nervous system evolution, and suggest that the similarities in dorsoventral patterning and trunk neuroanatomies evolved independently in Bilateria.


Assuntos
Evolução Biológica , Sistema Nervoso Central/anatomia & histologia , Sistema Nervoso Central/embriologia , Rede Nervosa/anatomia & histologia , Rede Nervosa/embriologia , Animais , Anelídeos/anatomia & histologia , Anelídeos/embriologia , Padronização Corporal , Invertebrados/anatomia & histologia , Invertebrados/embriologia , Placa Neural/anatomia & histologia , Placa Neural/embriologia , Filogenia , Rotíferos/anatomia & histologia , Rotíferos/embriologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA