Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Adv ; 9(3): eabq1637, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652513

RESUMO

Memory encoding and retrieval rely on specific interactions across multiple brain areas. Although connections between individual brain areas have been extensively studied, the anatomical and functional specificity of neuronal circuit organization underlying information transfer across multiple brain areas remains unclear. Here, we combine transsynaptic viral tracing, optogenetic manipulations, and calcium dynamics recordings to dissect the multisynaptic functional connectivity of the amygdala. We identify a distinct basolateral amygdala (BLA) subpopulation that connects disynaptically to the periaqueductal gray (PAG) via the central amygdala (CeA). This disynaptic pathway serves as a core circuit element necessary for the learning and expression of conditioned fear and exhibits learning-related plasticity. Together, our findings demonstrate the utility of multisynaptic approaches for functional circuit analysis and indicate that disynaptic specificity may be a general feature of neuronal circuit organization.

2.
Front Mol Neurosci ; 15: 988790, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36277495

RESUMO

The ability to learn from experience and consequently adapt our behavior is one of the most fundamental capacities enabled by complex and plastic nervous systems. Next to cellular and systems-level changes, learning and memory formation crucially depends on molecular signaling mechanisms. In particular, the extracellular-signal regulated kinase 1/2 (ERK), historically studied in the context of tumor growth and proliferation, has been shown to affect synaptic transmission, regulation of neuronal gene expression and protein synthesis leading to structural synaptic changes. However, to what extent the effects of ERK are specifically related to memory formation and stabilization, or merely the result of general neuronal activation, remains unknown. Here, we review the signals leading to ERK activation in the nervous system, the subcellular ERK targets associated with learning-related plasticity, and how neurons with activated ERK signaling may contribute to the formation of the memory trace.

3.
Nature ; 592(7853): 267-271, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33658711

RESUMO

The behaviour of an animal is determined by metabolic, emotional and social factors1,2. Depending on its state, an animal will focus on avoiding threats, foraging for food or on social interactions, and will display the appropriate behavioural repertoire3. Moreover, survival and reproduction depend on the ability of an animal to adapt to changes in the environment by prioritizing the appropriate state4. Although these states are thought to be associated with particular functional configurations of large-brain systems5,6, the underlying principles are poorly understood. Here we use deep-brain calcium imaging of mice engaged in spatial or social exploration to investigate how these processes are represented at the neuronal population level in the basolateral amygdala, which is a region of the brain that integrates emotional, social and metabolic information. We demonstrate that the basolateral amygdala encodes engagement in exploratory behaviour by means of two large, functionally anticorrelated ensembles that exhibit slow dynamics. We found that spatial and social exploration were encoded by orthogonal pairs of ensembles with stable and hierarchical allocation of neurons according to the saliency of the stimulus. These findings reveal that the basolateral amygdala acts as a low-dimensional, but context-dependent, hierarchical classifier that encodes state-dependent behavioural repertoires. This computational function may have a fundamental role in the regulation of internal states in health and disease.


Assuntos
Complexo Nuclear Basolateral da Amígdala/fisiologia , Comportamento Exploratório/fisiologia , Animais , Cálcio/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Comportamento Social , Navegação Espacial/fisiologia
4.
Hippocampus ; 24(12): 1549-61, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25043904

RESUMO

Protein phosphatases are important regulators of neural plasticity and memory. Some studies support that the Ca(2+) /calmodulin-dependent phosphatase calcineurin (CaN) is, on the one hand, a negative regulator of memory formation and, on the other hand, a positive regulator of memory extinction and reversal learning. However, the signaling mechanisms by which CaN exerts its action in such processes are not well understood. Previous findings support that CaN negatively regulate the nuclear factor kappaB (NF-κB) signaling pathway during extinction. Here, we have studied the role of CaN in contextual fear memory consolidation and reconsolidation in the hippocampus. We investigated the CaN control on the NF-κB signaling pathway, a key mechanism that regulates gene expression in memory processes. We found that post-training intrahippocampal administration of the CaN inhibitor FK506 enhanced memory retention one day but not two weeks after training. Accordingly, the inhibition of CaN by FK506 increased NF-κB activity in dorsal hippocampus. The administration of the NF-κB signaling pathway inhibitor sulfasalazine (SSZ) impeded the enhancing effect of FK506. In line with our findings in consolidation, FK506 administration before memory reactivation enhanced memory reconsolidation when tested one day after re-exposure to the training context. Strikingly, memory was also enhanced two weeks after training, suggesting that reinforcement during reconsolidation is more persistent than during consolidation. The coadministration of SSZ and FK506 blocked the enhancement effect in reconsolidation, suggesting that this facilitation is also dependent on the NF-κB signaling pathway. In summary, our results support a novel mechanism by which memory formation and reprocessing can be controlled by CaN regulation on NF-κB activity.


Assuntos
Medo/fisiologia , Hipocampo/fisiologia , Memória/fisiologia , NF-kappa B/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Inibidores de Calcineurina/farmacologia , Fármacos do Sistema Nervoso Central/farmacologia , Condicionamento Clássico/fisiologia , Eletrochoque , Masculino , Camundongos Endogâmicos C57BL , Testes Neuropsicológicos , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfassalazina/farmacologia , Tacrolimo/farmacologia
5.
J Physiol Paris ; 108(4-6): 278-85, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24978317

RESUMO

Memory consolidation requires de novo mRNA and protein synthesis. Transcriptional activation is controlled by transcription factors, their cofactors and repressors. Cofactors and repressors regulate gene expression by interacting with basal transcription machinery, remodeling chromatin structure and/or chemically modifying histones. Acetylation is the most studied epigenetic mechanism of histones modifications related to gene expression. This process is regulated by histone acetylases (HATs) and histone deacetylases (HDACs). More than 5 years ago, we began a line of research about the role of histone acetylation during memory consolidation. Here we review our work, presenting evidence about the critical role of this epigenetic mechanism during consolidation of context-signal memory in the crab Neohelice granulata, as well as during consolidation of novel object recognition memory in the mouse Mus musculus. Our evidence demonstrates that histone acetylation is a key mechanism in memory consolidation, functioning as a distinctive molecular feature of strong memories. Furthermore, we found that the strength of a memory can be characterized by its persistence or its resistance to extinction. Besides, we found that the role of this epigenetic mechanism regulating gene expression only in the formation of strongest memories is evolutionarily conserved.


Assuntos
Epigênese Genética/fisiologia , Epigenômica , Memória/fisiologia , Acetilação , Animais , Histonas/fisiologia , Humanos , NF-kappa B/metabolismo
6.
Anim Cogn ; 16(2): 255-72, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23114692

RESUMO

In contextual conditioning, a complex pattern of information is processed to associate the characteristics of a particular place with incentive or aversive reinforcements. This type of learning has been widely studied in mammals, but studies of other taxa are scarce. The context-signal memory (CSM) paradigm of the crab Chasmagnathus has been extensively used as a model of learning and memory. Although initially interpreted as habituation, some characteristics of contextual conditioning have been described. However, no anticipatory response has been detected for animals exposed to the training context. Thus, CSM could be interpreted either as an associative habituation or as contextual conditioning that occurs without a context-evoked anticipatory response. Here, we describe a training protocol developed for contextual Pavlovian conditioning (CPC). For each training trial, the context (conditioned stimulus, CS) was discretely presented and finished together with the unconditioned stimulus (US). In agreement with the CSM paradigm, a robust freezing response was acquired during the 15 training trials, and clear retention was found when tested with the US presentation after short (2 and 4 h) and long (1-4 days) delays. This CPC memory showed forward but not simultaneous presentation conditioning and was context specific and protein synthesis dependent. Additionally, a weak CPC memory was enhanced during consolidation. One day after training, CPC was extinguished by repeated CS presentation, while one presentation induced a memory labilisation-reconsolidation process. Finally, we found an anticipatory conditioned response (CR) during the CS presentation for both short-term (4 h) and long-term memory (24 h). These findings support the conditioning nature of the new paradigm.


Assuntos
Braquiúros , Condicionamento Clássico , Animais , Bicuculina/farmacologia , Condicionamento Clássico/efeitos dos fármacos , Sinais (Psicologia) , Cicloeximida/farmacologia , Aprendizagem por Discriminação/efeitos dos fármacos , Extinção Psicológica , Masculino , Estimulação Luminosa , Inibidores da Síntese de Proteínas/farmacologia , Sulfassalazina/farmacologia
7.
BMC Neurosci ; 11: 109, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20809979

RESUMO

BACKGROUND: Human ß-amyloid, the main component in the neuritic plaques found in patients with Alzheimer's disease, is generated by cleavage of the ß-amyloid precursor protein. Beyond the role in pathology, members of this protein family are synaptic proteins and have been associated with synaptogenesis, neuronal plasticity and memory, both in vertebrates and in invertebrates. Consolidation is necessary to convert a short-term labile memory to a long-term and stable form. During consolidation, gene expression and de novo protein synthesis are regulated in order to produce key proteins for the maintenance of plastic changes produced during the acquisition of new information. RESULTS: Here we partially cloned and sequenced the beta-amyloid precursor protein like gene homologue in the crab Chasmagnathus (cappl), showing a 37% of identity with the fruit fly Drosophila melanogaster homologue and 23% with Homo sapiens but with much higher degree of sequence similarity in certain regions. We observed a wide distribution of cappl mRNA in the nervous system as well as in muscle and gills. The protein localized in all tissues analyzed with the exception of muscle. Immunofluorescence revealed localization of cAPPL in associative and sensory brain areas. We studied gene and protein expression during long-term memory consolidation using a well characterized memory model: the context-signal associative memory in this crab species. mRNA levels varied at different time points during long-term memory consolidation and correlated with cAPPL protein levels CONCLUSIONS: cAPPL mRNA and protein is widely distributed in the central nervous system of the crab and the time course of expression suggests a role of cAPPL during long-term memory formation.


Assuntos
Precursor de Proteína beta-Amiloide/genética , Braquiúros/metabolismo , Sistema Nervoso Central/metabolismo , Memória/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Western Blotting , Clonagem Molecular , DNA Complementar/biossíntese , DNA Complementar/genética , Imuno-Histoquímica , Imunoprecipitação , Masculino , Dados de Sequência Molecular , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
8.
Learn Mem ; 16(10): 600-6, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19794185

RESUMO

Gene expression is a key process for memory consolidation. Recently, the participation of epigenetic mechanisms like histone acetylation was evidenced in long-term memories. However, until now the training strength required and the persistence of the chromatin acetylation recruited are not well characterized. Here we studied whether histone acetylation is involved in consolidation in invertebrates, whether it depends on the training strength, and whether it is a permanent or transient mechanism. We used a well-characterized memory model in invertebrates, the context-signal memory in crabs. Our results show no changes in histone 3 (H3) acetylation during consolidation of a standard training protocol. However, strong training induced a significant increase in H3 acetylation 1-h post-training, returning to basal levels afterward. Accordingly, the administration of histone deacetylase inhibitors sodium butyrate (NaB) and trichostatin A allowed a weak training to induce long-term memory. NaB enhanced memory in two phases during consolidation. These findings support that H3 acetylation (1) is involved in consolidation, (2) occurs only after strong training, (3) is a transient process, and (4) memory is enhanced in two phases. The coincidence of these phases with other mechanisms of gene expression is discussed.


Assuntos
Encéfalo/fisiologia , Regulação da Expressão Gênica , Histonas/metabolismo , Memória/fisiologia , Acetilação/efeitos dos fármacos , Animais , Braquiúros , Encéfalo/efeitos dos fármacos , Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Ácidos Hidroxâmicos/farmacologia , Masculino , Memória/efeitos dos fármacos
9.
Biol Bull ; 210(3): 280-8, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16801501

RESUMO

Consolidation of long-term memory requires the activation of several transduction pathways that lead to post-translational modifications of synaptic proteins and to regulation of gene expression, both of which promote stabilization of specific changes in the activated circuits. In search of the molecular mechanisms involved in such processes, we used the context-signal associative learning paradigm of the crab Chasmagnathus. In this model, we studied the role of some molecular mechanisms, namely cAMP-dependent protein kinase (PKA), extracellular-signal-regulated kinase (ERK), the nuclear factor kappa B (NF-kappaB) transcription factor, and the role of synaptic proteins such as amyloid beta precursor protein, with the object of describing key mechanisms involved in memory processing. In this article we review the most salient results obtained over a decade of research in this memory model.


Assuntos
Braquiúros/fisiologia , Memória/fisiologia , Modelos Neurológicos , Transdução de Sinais , Precursor de Proteína beta-Amiloide/fisiologia , Animais , Braquiúros/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Modelos Animais , NF-kappa B/fisiologia , Transmissão Sináptica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA