Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Histochem Cytochem ; 54(5): 155-165, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34764524

RESUMO

The mechanisms controlling the aggressiveness and survival of cervical SCC cells remain unclear. We investigated how the physical and biological microenvironments regulate the growth, apoptosis and invasiveness of cervical cancer cells. Dynamic flow and air exposure were evaluated as physical microenvironmental factors, and stromal fibroblasts were evaluated as a biological microenvironmental factor. To investigate any regulatory effects of these microenvironmental factors, we established a new culture model which concurrently replicates fluid streaming, air exposure and cancer-stromal interactions. Three cervical cancer cell lines were cultured with or without NIH 3T3 fibroblasts. Air exposure was realized using a double-dish culture system. Dynamic flow was created using a rotary shaker. Dynamic flow and air exposure promoted the proliferative activity and decreased the apoptosis of cervical cancer cells. Fibroblasts regulated the invasive ability, growth and apoptosis of cervical cancer cells. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by dynamic flow, air exposure and cellular interactions, depending on the cervical cancer cell type. This study demonstrates that the physical and biological microenvironments interact to regulate the aggressiveness and survival of cervical cancer cells. Our simple culture system is a promising model for developing further treatment strategies for various types of cancer.

2.
Tissue Eng Part A ; 27(23-24): 1480-1489, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33813837

RESUMO

Cervical stenosis is a postoperative complication of conization for uterine cervical malignancy, but a standard method of preventing this complication has yet to be established. Collagen vitrigel is a collagen-based biomaterial that has antifibrotic and epithelization promoting actions. We evaluated the antistenotic effect of an indwelling collagen vitrigel membrane-coated nylon line (CVNL) after cervical conization in rabbits. In one group of rabbits, a CVNL was placed in the cervical canal after conization. In another group, a nylon line without a collagen coating was placed in the cervical canal after conization. The control group underwent cervical conization without placement of a device. The control (conization alone) and nylon (conization plus indwelling nylon line) groups exhibited cervical swelling. Rabbits in the CVNL group (cervical conization plus indwelling CVNL in the xerogel state) had a normal cervical surface. The cervical canal in the control group was enlarged and showed cystic changes attributed to cervical stenosis. The nylon group exhibited a trend toward cervical canal dilatation. In the CVNL group, the cervical canal was normal and did not show cystic dilatation. Fibrosis occurred to a lesser degree in the nylon group than in the control group, and the CVNL group exhibited minimal interstitial fibrosis. The control and nylon groups showed increased numbers of myofibroblasts in the regenerated cervix, but few myofibroblasts were observed in the CVNL group. Abundant collagen type III was observed in regenerated cervical tissue in the control and nylon groups but not in the CVNL group. The number of proliferative mesenchymal cells in the regenerated cervix was lowest in the CVNL group. The expressions of connective tissue growth factor (CTGF, a regulator of fibroblast growth and extracellular matrix secretion), extracellular signal-regulated protein kinases 1 and 2, and c-Jun N-terminal kinase (which are involved in the induction of CTGF by transforming growth factor-ß) were lower in the CVNL group than in the control or nylon groups. This study describes an indwelling CVNL that prevents cervical stenosis and cystic changes after conization. These effects were likely mediated by inhibition of fibrosis, myofibroblast emergence, CTGF expression, and collagen type III deposition in regenerating cervix. Impact statement Collagen vitrigel is a high-density collagen material that promotes epithelization, inhibits fibrosis, and suppresses inflammation in regenerating tissue. We evaluated whether a collagen vitrigel membrane-coated nylon line would prevent cervical stenosis after conization in the rabbit. We found that an indwelling collagen vitrigel membrane-coated nylon line prevented cervical canal stenosis and cystic changes after cervical conization by inhibiting fibrosis, myofibroblast emergence, connective tissue growth factor expression, and collagen type III deposition in the regenerating cervix. Our device has potential as a new method of preventing cervical canal fibrosis and stenosis after conization for cervical cancer.


Assuntos
Colo do Útero , Conização , Animais , Colo do Útero/cirurgia , Colágeno/farmacologia , Conização/efeitos adversos , Conização/métodos , Constrição Patológica/prevenção & controle , Feminino , Humanos , Nylons/farmacologia , Coelhos
3.
J Pathol ; 254(1): 46-56, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33512712

RESUMO

Renal cell carcinoma (RCC) is the most predominant type of kidney cancer in adults and is responsible for approximately 85% of clinical cases. The tumor-specific microenvironment includes both cellular and physical factors, and it regulates the homeostasis and function of cancer cells. Perirenal adipose tissue and tumor-associated macrophages are the major cellular components of the RCC microenvironment. The RCC microvasculature network generates interstitial fluid flow, which is the movement of fluid through the extracellular compartments of tissues. This fluid flow is a specific physical characteristic of the microenvironment of RCC. We hypothesized that there may be an interaction between the cellular and physical microenvironments and that these two factors may play an important role in regulating the behavior of RCC. To elucidate the effects of adipose tissue, macrophages, and fluid flow stimulation on RCC and to investigate the relationships between these factors, we used a collagen gel culture method to generate cancer-stroma interactions and a gyratory shaker to create fluid flow stimulation. Adipose-related cells, monocytes, and fluid flow influenced the proliferative potential and invasive capacity of RCC cells. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by both fluid flow and cellular interactions between RCC and adipose tissue fragments or macrophages. Fluid flow stimulation synergistically enhanced the anti-proliferative effect of sunitinib on RCC cells, but macrophages abolished the synergistic anti-proliferative effect related to fluid flow stimulation. In conclusion, we established a reconstructed model to investigate the cellular and physical microenvironments of RCC in vitro. Our alternative culture model may provide a promising tool for further therapeutic investigations into many types of cancer. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Carcinoma de Células Renais/patologia , Técnicas de Cultura de Células/métodos , Neoplasias Renais/patologia , Microambiente Tumoral/fisiologia , Animais , Antineoplásicos/farmacologia , Linhagem Celular , Resistencia a Medicamentos Antineoplásicos/fisiologia , Líquido Extracelular/fisiologia , Humanos , Ratos , Sunitinibe/farmacologia , Microambiente Tumoral/efeitos dos fármacos
4.
Graefes Arch Clin Exp Ophthalmol ; 257(9): 1915-1924, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31321523

RESUMO

PURPOSE: In vivo microenvironments are critical to tissue homeostasis and wound healing, and the cornea is regulated by a specific microenvironment complex that consists of cell-cell interactions, air-liquid interfaces, and fluid flow stimulation. In this study, we aimed to clarify the effects of and the correlations among these three component factors on the cell kinetics of corneal epithelial cells. METHODS: Human corneal epithelial-transformed (HCE-T) cells were cocultured with either primary rat corneal fibroblasts or NIH 3T3 fibroblasts. We employed a double-dish culture method to create an air-liquid interface and a gyratory shaker to create fluid flow stimulation. Morphometric and protein expression analyses were performed for the HCE-T cells. RESULTS: Both the primary rat fibroblasts and the NIH 3T3 cells promoted HCE-T cell proliferation, and the presence of fluid flow synergistically enhanced this effect and inhibited the apoptosis of HCE-T cells. Moreover, fluid flow enhanced the emergence of myofibroblasts when cocultured with primary rat fibroblasts or NIH 3T3 cells. Extracellular signal-regulated kinase and p38 signaling were regulated either synergistically or independently by both fluid flow and cellular interaction between the HCE-T and NIH 3T3 cells. CONCLUSION: The cell-cell interaction and fluid flow stimulation in the air-liquid interface synergistically or independently regulated the behavior of HCE-T cells. Fluid flow accelerated the phenotypic change from corneal fibroblasts and NIH 3T3 cells to myofibroblasts. Elucidation of the multicomponent interplay in this microenvironment will be critical to the homeostasis and regeneration of the cornea and other ocular tissues.


Assuntos
Lesões da Córnea/metabolismo , Epitélio Corneano/metabolismo , Células-Tronco Mesenquimais/citologia , Cicatrização/fisiologia , Animais , Western Blotting , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Lesões da Córnea/patologia , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Epitélio Corneano/patologia , Homeostase , Humanos , Imuno-Histoquímica , Ratos , Ratos Wistar , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA