Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Allergy ; 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898695

RESUMO

BACKGROUND AND OBJECTIVES: Viral respiratory infections significantly affect young children, particularly extremely premature infants, resulting in high hospitalization rates and increased health-care burdens. Nasal epithelial cells, the primary defense against respiratory infections, are vital for understanding nasal immune responses and serve as a promising target for uncovering underlying molecular and cellular mechanisms. METHODS: Using a trans-well pseudostratified nasal epithelial cell system, we examined age-dependent developmental differences and antiviral responses to influenza A and respiratory syncytial virus through systems biology approaches. RESULTS: Our studies revealed differences in innate-receptor repertoires, distinct developmental pathways, and differentially connected antiviral network circuits between neonatal and adult nasal epithelial cells. Consensus network analysis identified unique and shared cellular-viral networks, emphasizing highly relevant virus-specific pathways, independent of viral replication kinetics. CONCLUSION: This research highlights the importance of nasal epithelial cells in innate antiviral immune responses and offers crucial insights that allow for a deeper understanding of age-related differences in nasal epithelial cell immunity following respiratory virus infections.

2.
J Transl Med ; 22(1): 64, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38229087

RESUMO

BACKGROUND: Atopic dermatitis (AD) is a prevalent chronic inflammatory skin disease whose pathophysiology involves the interplay between genetic and environmental factors, ultimately leading to dysfunction of the epidermis. While several treatments are effective in symptom management, many existing therapies offer only temporary relief and often come with side effects. For this reason, the formulation of an effective therapeutic plan is challenging and there is a need for more effective and targeted treatments that address the root causes of the condition. Here, we hypothesise that modelling the complexity of the molecular buildup of the atopic dermatitis can be a concrete means to drive drug discovery. METHODS: We preprocessed, harmonised and integrated publicly available transcriptomics datasets of lesional and non-lesional skin from AD patients. We inferred co-expression network models of both AD lesional and non-lesional skin and exploited their interactional properties by integrating them with a priori knowledge in order to extrapolate a robust AD disease module. Pharmacophore-based virtual screening was then utilised to build a tailored library of compounds potentially active for AD. RESULTS: In this study, we identified a core disease module for AD, pinpointing known and unknown molecular determinants underlying the skin lesions. We identified skin- and immune-cell type signatures expressed by the disease module, and characterised the impaired cellular functions underlying the complex phenotype of atopic dermatitis. Therefore, by investigating the connectivity of genes belonging to the AD module, we prioritised novel putative biomarkers of the disease. Finally, we defined a tailored compound library by characterising the therapeutic potential of drugs targeting genes within the disease module to facilitate and tailor future drug discovery efforts towards novel pharmacological strategies for AD. CONCLUSIONS: Overall, our study reveals a core disease module providing unprecedented information about genetic, transcriptional and pharmacological relationships that foster drug discovery in atopic dermatitis.


Assuntos
Dermatite Atópica , Humanos , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/genética , Pele , Perfilação da Expressão Gênica , Fenótipo , Biomarcadores
3.
Front Allergy ; 4: 1152927, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36998574

RESUMO

Contact with natural environments enriches the human microbiome, promotes immune balance and protects against allergies and inflammatory disorders. In Finland, the allergy & asthma epidemic became slowly visible in mid 1960s. After the World War II, Karelia was split into Finnish and Soviet Union (now Russia) territories. This led to more marked environmental and lifestyle changes in the Finnish compared with Russian Karelia. The Karelia Allergy Study 2002-2022 showed that allergic conditions were much more common on the Finnish side. The Russians had richer gene-microbe network and interaction than the Finns, which associated with better balanced immune regulatory circuits and lower allergy prevalence. In the Finnish adolescents, a biodiverse natural environment around the homes associated with lower occurrence of allergies. Overall, the plausible explanation of the allergy disparity was the prominent change in environment and lifestyle in the Finnish Karelia from 1940s to 1980s. The nationwide Finnish Allergy Programme 2008-2018 implemented the biodiversity hypothesis into practice by endorsing immune tolerance, nature contacts, and allergy health with favorable results. A regional health and environment programme, Nature Step to Health 2022-2032, has been initiated in the City of Lahti, EU Green Capital 2021. The programme integrates prevention of chronic diseases (asthma, diabetes, obesity, depression), nature loss, and climate crisis in the spirit of Planetary Health. Allergic diseases exemplify inappropriate immunological responses to natural environment. Successful management of the epidemics of allergy and other non-communicable diseases may pave the way to improve human and environmental health.

4.
Br J Dermatol ; 188(2): 278-287, 2023 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-36637098

RESUMO

BACKGROUND: Cobalt (Co) causes allergic contact dermatitis (ACD) and the emerging use of Co nanoparticles (CoNPs) warrants gaining further insight into its potential to elicit ACD in sensitized individuals. OBJECTIVES: The aims of the study were to clarify to what extent CoNPs may elicit ACD responses in participants with Co contact allergy, and to evaluate whether the nanoparticles cause a distinct immune response compared with cobalt chloride (CoCl2) in the skin reactions. METHODS: Fourteen individuals with Co contact allergy were exposed to CoNPs, CoCl2, a Co-containing hard-metal disc (positive control), and an empty test chamber (negative control) by patch testing. Allergic responses were evaluated clinically by a dermatologist at Days 2, 4 and 7. At Day 2, patch-test chambers were removed, and remaining test-substance and skin-wipe samples were collected for inductive-coupled plasma mass spectrometry (ICP-MS) analysis. Additionally, skin biopsies were taken from patch-test reactions at Day 4 for quantitative real-time polymerase chain reaction analysis, histopathology and ICP-MS analysis of Co skin penetration. RESULTS: Patch testing with CoNPs elicited allergic reactions in Co-sensitized individuals. At all timepoints, clinical assessment revealed significantly lower frequencies of positive patch-test reactions to CoNPs compared with CoCl2 or to the positive control. CoNPs elicited comparable immune responses to CoCl2. Chemical analysis of Co residues in patch-test filters, and on skin, shows lower doses for CoNPs compared with CoCl2. CONCLUSIONS: CoNPs potently elicit immune responses in Co-sensitized individuals. Even though patch testing with CoNPs resulted in a lower skin dose than CoCl2, identical immunological profiles were present. Further research is needed to identify the potential harm of CoNPs to human health.


Assuntos
Dermatite Alérgica de Contato , Nanopartículas , Humanos , Dermatite Alérgica de Contato/diagnóstico , Dermatite Alérgica de Contato/etiologia , Cobalto/efeitos adversos , Cobalto/química , Pele , Testes do Emplastro , Alérgenos
5.
Front Allergy ; 3: 878862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35769561

RESUMO

Background: Previously, we investigated skin microbiota and blood cell gene expression in Finnish and Russian teenagers with contrasting incidence of allergic conditions. The microbiota and transcriptomic signatures were distinctly different, with high Acinetobacter abundance and suppression of genes regulating innate immune response in healthy subjects. Objective: Here, we investigated long non-coding RNA (lncRNA) expression profiles of blood mononuclear cells (PBMC) from healthy and allergic subjects, to identify lncRNAs that act at the interphase of microbiome-mediated immune homeostasis in allergy/asthma. Methods: Genome-wide co-expression network analyses of blood cell lncRNA/mRNA expression was integrated with skin microbiota profiles of Finnish (69) and Russian (75) subjects. Selected lncRNAs were validated by stimulation of cohort-derived PBMCs and a macrophage cell model with birch pollen allergen (Betv1) or lipopolysaccharide, respectively. Results: Finnish and Russian PBMCs were differentiated by 3,818 lncRNA transcripts. In the Finnish subjects with high prevalence of allergy and asthma, a subset of 37 downregulated lncRNAs (including, FAM155A-IT1 and LOC400958) were identified. They were part of a co-expression network with 20 genes known to be related to asthma and allergic rhinitis (R > 0.95). Incidentally, all these 20 genes were also components of pathways corresponding to cellular response to bacterium. The Finnish and Russian samples were also differentiated by the abundance of 176 bacterial OTU (operational taxonomic units). The subset of 37 lncRNAs, associated with allergy, was most correlated with the abundance of Acinetobacter (R > +0.5), Jeotgalicoccus (R > +0.5), Corynebacterium (R < -0.5) and Micrococcus (R < -0.5). Conclusion: In Finnish and Russian teenagers with contrasting allergy and asthma prevalence, epigenetic differences in lncRNA expression appear to be important components of the underlying microbiota-immune interactions. Unraveling the functions of the 37 differing lncRNAs may be the key to understanding microbiome-immune crosstalk, and to develop clinically relevant biomarkers.

6.
J Dermatol Sci ; 106(3): 132-140, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35537882

RESUMO

BACKGROUND: Loss-of-function mutations in the filaggrin (FLG) gene directly alter skin barrier function and critically influence atopic inflammation. While skin barrier dysfunction, Th2-associated inflammation and bacterial dysbiosis are well-known characteristics of atopic dermatitis (AD), the mechanisms interconnecting genotype, transcriptome and microbiome remain largely elusive. OBJECTIVE: In-depth analysis of FLG genotype-associated skin gene expression alterations and host-microbe interactions in AD. METHODS: Multi-omics characterization of a cohort of AD patients carrying heterozygous loss-of-function mutations in the FLG gene (ADMut) (n = 15), along with matched wild-type (ADWt) patients and healthy controls. Detailed clinical characterization, microarray gene expression and 16 S rRNA-based microbial marker gene data were generated and analyzed. RESULTS: In the context of filaggrin dysfunction, the transcriptome was characterized by dysregulation of barrier function and water homeostasis, while the lesional skin of ADWt demonstrated the specific upregulation of pro-inflammatory cytokines and T-cell proliferation. S. aureus dominated the microbiome in both patient groups, however, shifting microbial communities could be observed when comparing healthy with non-lesional ADWt or ADMut skin, offering the opportunity to identify microbe-associated transcriptomic signatures. Moreover, an AD core signature with 28 genes, including CCL13, CCL18, BTC, SCIN, RAB31 and PCLO was identified. CONCLUSIONS: Our integrative approach provides molecular insights for the concept that FLG loss-of-function mutations are a genetic shortcut to atopic inflammation and unravels the complex interplay between genotype, transcriptome and microbiome in the human holobiont.


Assuntos
Dermatite Atópica , Proteínas Filagrinas/metabolismo , Dermatite Atópica/metabolismo , Interações entre Hospedeiro e Microrganismos/genética , Humanos , Inflamação/genética , Inflamação/metabolismo , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Mutação , Pele/metabolismo , Staphylococcus aureus
7.
Clin Exp Allergy ; 52(8): 929-941, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35147263

RESUMO

BACKGROUND: In allergic patients, clinical symptoms caused by pollen remind of symptoms triggered by viral respiratory infections, which are also the main cause of asthmatic exacerbations. In patients sensitized to birch pollen, Bet v 1 is the major symptom-causing allergen. Immune mechanisms driving Bet v 1-related responses of human blood cells have not been fully characterized. OBJECTIVE: To characterize the immune response to Bet v 1 in peripheral blood in patients allergic to birch pollen. METHODS: The peripheral blood mononuclear cells of birch-allergic (n = 24) and non-allergic (n = 47) adolescents were stimulated ex-vivo followed by transcriptomic profiling. Systems-biology approaches were employed to decipher disease-relevant gene networks and deconvolution of associated cell populations. RESULTS: Solely in birch-allergic patients, co-expression analysis revealed activation of networks of innate immunity and antiviral signalling as the immediate response to Bet v 1 stimulation. Toll-like receptors and signal transducer transcription were the main drivers of gene expression patterns. Macrophages and dendritic cells were the main cell subsets responding to Bet v 1. CONCLUSIONS AND CLINICAL RELEVANCE: In birch-pollen-allergic patients, the activated innate immune networks seem to be, in part, the same as those activated during viral infections. This tendency of the immune system to read pollens as viruses may provide new insight to allergy prevention and treatment.


Assuntos
Betula , Hipersensibilidade , Adolescente , Alérgenos , Antígenos de Plantas , Antivirais , Humanos , Imunoglobulina E , Leucócitos Mononucleares , Proteínas de Plantas , Pólen
8.
J Invest Dermatol ; 142(3 Pt A): 509-512, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34749986

RESUMO

The chemokine CCL2 is a potential biomarker for progression of inflammatory skin disease. In a new article of the Journal of Investigative Dermatology, Shibuya et al. (2021) use murine experimental models to show that CCL2‒CCR2‒dependent IL-1ß secretion by local skin cells and skin-infiltrating neutrophils are key drivers of skin irritation.


Assuntos
Dermatite Irritante , Neutrófilos , Animais , Inflamação , Irritantes/farmacologia , Camundongos , Neutrófilos/efeitos dos fármacos , Receptores CCR2 , Pele/efeitos dos fármacos , Tensoativos
9.
Exp Dermatol ; 30(10): 1517-1531, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34387406

RESUMO

The two most common chronic inflammatory skin diseases are atopic dermatitis (AD) and psoriasis. The underpinnings of the remarkable degree of clinical heterogeneity of AD and psoriasis are poorly understood and, as a consequence, disease onset and progression are unpredictable and the optimal type and time point for intervention are as yet unknown. The BIOMAP project is the first IMI (Innovative Medicines Initiative) project dedicated to investigating the causes and mechanisms of AD and psoriasis and to identify potential biomarkers responsible for the variation in disease outcome. The consortium includes 7 large pharmaceutical companies and 25 non-industry partners including academia. Since there is mounting evidence supporting an important role for microbial exposures and our microbiota as factors mediating immune polarization and AD and psoriasis pathogenesis, an entire work package is dedicated to the investigation of skin and gut microbiome linked to AD or psoriasis. The large collaborative BIOMAP project will enable the integration of patient cohorts, data and knowledge in unprecedented proportions. The project has a unique opportunity with a potential to bridge and fill the gaps between current problems and solutions. This review highlights the power and potential of the BIOMAP project in the investigation of microbe-host interplay in AD and psoriasis.


Assuntos
Dermatite Atópica/imunologia , Dermatite Atópica/microbiologia , Microbiota/imunologia , Psoríase/imunologia , Psoríase/microbiologia , Pele/imunologia , Pele/microbiologia , Humanos
10.
Allergy ; 76(12): 3613-3626, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33959980

RESUMO

Increase of allergic conditions has occurred at the same pace with the Great Acceleration, which stands for the rapid growth rate of human activities upon earth from 1950s. Changes of environment and lifestyle along with escalating urbanization are acknowledged as the main underlying causes. Secondary (tertiary) prevention for better disease control has advanced considerably with innovations for oral immunotherapy and effective treatment of inflammation with corticosteroids, calcineurin inhibitors, and biological medications. Patients are less disabled than before. However, primary prevention has remained a dilemma. Factors predicting allergy and asthma risk have proven complex: Risk factors increase the risk, while protective factors counteract them. Interaction of human body with environmental biodiversity with micro-organisms and biogenic compounds as well as the central role of epigenetic adaptation in immune homeostasis have given new insight. Allergic diseases are good indicators of the twisted relation to environment. In various non-communicable diseases, the protective mode of the immune system indicates low-grade inflammation without apparent cause. Giving microbes, pro- and prebiotics, has shown some promise in prevention and treatment. The real-world public health programme in Finland (2008-2018) emphasized nature relatedness and protective factors for immunological resilience, instead of avoidance. The nationwide action mitigated the allergy burden, but in the lack of controls, primary preventive effect remains to be proven. The first results of controlled biodiversity interventions are promising. In the fast urbanizing world, new approaches are called for allergy prevention, which also has a major cost saving potential.


Assuntos
Asma , Hipersensibilidade , Asma/complicações , Asma/prevenção & controle , Biodiversidade , Humanos , Imunoterapia , Prebióticos
11.
J Immunotoxicol ; 18(1): 74-84, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34019775

RESUMO

Sensitization to a contact allergen brings with it a lifelong risk to develop allergic contact dermatitis. Inflammation is an important part of the skin sensitizing mechanism, and understanding how different haptens stimulate the immune system, as well as the role played by different cell types present in skin, may be helpful for developing optimized in vitro models for risk assessment of new chemicals or mixtures. The aim of this study was to compare the cytokine profile following exposure of cells representing keratinocytes (HaCaT), monocytes (THP-1) and a co-culture of these cells to three clinically important skin sensitizers: cobalt (II) chloride (CoCl2), methylisothiazolinone (MI) and p-phenylenediamine (PPD). Secretion of ten pro-inflammatory cytokines was measured using multiplexing. The results showed that the cytokine response differed substantially between the three cell assays. CoCl2 caused an increase of IL-8 in HaCaT cells, while the induction of also IL-13 and IL-1ß was observed in THP-1 cells and co-cultures. MI induced six cytokines in HaCaT cells but only IL-1ß in the THP-1 cells and four cytokines in the co-culture. Interestingly, the IL-1ß response was massive in the co-culture. PPD caused release of IL-1ß in all three models as well as IL-8 in the co-culture. Control experiments with two non-sensitizers and irritants (lactic acid and sodium dodecyl sulfate) showed no effect on IL-8 or IL-1ß in the co-culture. Taken together, results from this exploratory analysis show unique cytokine profiles dependent on the type of hapten and cell model. Importantly, all three haptens triggered secretion of IL-1ß and IL-8 in a co-culture of HaCaT cells and THP-1 cells, representing the most robust test system.


Assuntos
Citocinas , Monócitos , Técnicas de Cocultura , Queratinócitos , Pele
12.
J Allergy Clin Immunol Pract ; 9(5): 1892-1901.e1, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33529723

RESUMO

BACKGROUND: Egg allergy is the second most common food allergy in children. Persistent food allergy increases the risk of anaphylaxis and reduces the quality of life. OBJECTIVE: To determine the efficacy of oral immunotherapy (OIT) with raw egg white powder and study its effects on humoral responses in children with persistent egg allergy. METHODS: Fifty children aged 6 to 17 years with egg allergy, diagnosed by double-blind, placebo-controlled food challenge, were randomized 3:2 to 8 months of OIT with a maintenance dose of 1 g of egg white protein or 6 months of avoidance after which the avoidance group crossed over to OIT. We examined changes in IgE, IgG4, and IgA concentrations to Gal d 1-4 during OIT compared with avoidance and assessed clinical reactivity at 8 and 18 months. RESULTS: After 8 months, 22 of 50 children (44%) on OIT and 1 of 21 (4.8%) on egg avoidance were desensitized to the target dose, 23 of 50 (46%) were partially desensitized (dose <1 g), and 5 of 50 (10%) discontinued. IgG4 concentrations to Gal d 1-4 and IgA to Gal d 1-2 increased significantly, whereas IgE to Gal d 2 decreased. A heatmap analysis of the IgE patterns revealed 3 distinct clusters linked with the clinical outcome. High baseline egg white-specific IgE and polysensitization to Gal d 1-4 related with failure to achieve the maintenance dose at 8 months. After 18 months of treatment, 36 of 50 patients (72%) were desensitized and 8 of 50 (16%) partially desensitized. CONCLUSIONS: OIT with raw egg enables liberation of egg products into the daily diet in most patients. Subjects with high egg white-specific IgE concentrations and sensitization to multiple egg allergen components at baseline benefit from prolonged treatment.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade a Ovo , Administração Oral , Adolescente , Alérgenos , Animais , Galinhas , Criança , Hipersensibilidade a Ovo/terapia , Feminino , Humanos , Imunidade Humoral , Qualidade de Vida
14.
J Allergy Clin Immunol ; 147(3): 1031-1040, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33338541

RESUMO

BACKGROUND: Differential DNA methylation associated with allergy might provide novel insights into the shared or unique etiology of asthma, rhinitis, and eczema. OBJECTIVE: We sought to identify DNA methylation profiles associated with childhood allergy. METHODS: Within the European Mechanisms of the Development of Allergy (MeDALL) consortium, we performed an epigenome-wide association study of whole blood DNA methylation by using a cross-sectional design. Allergy was defined as having symptoms from at least 1 allergic disease (asthma, rhinitis, or eczema) and positive serum-specific IgE to common aeroallergens. The discovery study included 219 case patients and 417 controls at age 4 years and 228 case patients and 593 controls at age 8 years from 3 birth cohorts, with replication analyses in 325 case patients and 1111 controls. We performed additional analyses on 21 replicated sites in 785 case patients and 2124 controls by allergic symptoms only from 8 cohorts, 3 of which were not previously included in analyses. RESULTS: We identified 80 differentially methylated CpG sites that showed a 1% to 3% methylation difference in the discovery phase, of which 21 (including 5 novel CpG sites) passed genome-wide significance after meta-analysis. All 21 CpG sites were also significantly differentially methylated with allergic symptoms and shared between asthma, rhinitis, and eczema. The 21 CpG sites mapped to relevant genes, including ACOT7, LMAN3, and CLDN23. All 21 CpG sties were differently methylated in asthma in isolated eosinophils, and 10 were replicated in respiratory epithelium. CONCLUSION: Reduced whole blood DNA methylation at 21 CpG sites was significantly associated with childhood allergy. The findings provide novel insights into the shared molecular mechanisms underlying asthma, rhinitis, and eczema.


Assuntos
Asma/genética , Ilhas de CpG/genética , Eczema/genética , Hipersensibilidade/genética , Rinite Alérgica/genética , Adolescente , Criança , Pré-Escolar , Estudos de Coortes , Estudos Transversais , Metilação de DNA , Epigênese Genética , Feminino , Humanos , Imunoglobulina E/metabolismo , Masculino , Transcriptoma
16.
Front Immunol ; 12: 704633, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34975829

RESUMO

We previously reported the results of a randomized, open-label trial of egg oral immunotherapy (OIT) in 50 children where 44% were desensitized and 46% were partially desensitized after 8 months of treatment. Here we focus on cell-mediated molecular mechanisms driving desensitization during egg OIT. We sought to determine whether changes in genome-wide gene expression in blood cells during egg OIT correlate with humoral responses and the clinical outcome. The blood cell transcriptome of 50 children receiving egg OIT was profiled using peripheral blood mononuclear cell (PBMC) samples obtained at baseline and after 3 and 8 months of OIT. We identified 467 differentially expressed genes (DEGs) after 3 or 8 months of egg OIT. At 8 months, 86% of the DEGs were downregulated and played a role in the signaling of TREM1, IL-6, and IL-17. In correlation analyses, Gal d 1-4-specific IgG4 antibodies associated positively with DEGs playing a role in pathogen recognition and antigen presentation and negatively with DEGs playing a role in the signaling of IL-10, IL-6, and IL-17. Desensitized and partially desensitized patients had differences in their antibody responses, and although most of the transcriptomic changes were shared, both groups had also specific patterns, which suggest slower changes in partially desensitized and activation of NK cells in the desensitized group. OIT for egg allergy in children inhibits inflammation and activates innate immune responses regardless of the clinical outcome at 8 months. Changes in gene expression patterns first appear as posttranslational protein modifications, followed by more sustained epigenetic gene regulatory functions related to successful desensitization.


Assuntos
Dessensibilização Imunológica , Hipersensibilidade a Ovo/terapia , Proteínas do Ovo/imunologia , Genômica/métodos , Imunidade Inata , Inflamação/prevenção & controle , Leucócitos Mononucleares/metabolismo , Transcriptoma , Administração Oral , Adolescente , Alérgenos/administração & dosagem , Alérgenos/uso terapêutico , Especificidade de Anticorpos , Criança , Citocinas/sangue , Relação Dose-Resposta Imunológica , Hipersensibilidade a Ovo/sangue , Hipersensibilidade a Ovo/genética , Hipersensibilidade a Ovo/imunologia , Proteínas do Ovo/administração & dosagem , Proteínas do Ovo/efeitos adversos , Proteínas do Ovo/uso terapêutico , Feminino , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Imunoglobulinas/sangue , Inflamação/etiologia , Inflamação/imunologia , Isoanticorpos/sangue , Isoanticorpos/imunologia , Contagem de Linfócitos , Subpopulações de Linfócitos/imunologia , Masculino , Resultado do Tratamento
17.
Allergy ; 76(4): 1173-1187, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33001460

RESUMO

It is well established that different sites in healthy human skin are colonized by distinct microbial communities due to different physiological conditions. However, few studies have explored microbial heterogeneity between skin sites in diseased skin, such as atopic dermatitis (AD) lesions. To address this issue, we carried out deep analysis of the microbiome and transcriptome in the skin of a large cohort of AD patients and healthy volunteers, comparing two physiologically different sites: upper back and posterior thigh. Microbiome samples and biopsies were obtained from both lesional and nonlesional skin to identify changes related to the disease process. Transcriptome analysis revealed distinct disease-related gene expression profiles depending on anatomical location, with keratinization dominating the transcriptomic signatures in posterior thigh, and lipid metabolism in the upper back. Moreover, we show that relative abundance of Staphylococcus aureus is associated with disease severity in the posterior thigh, but not in the upper back. Our results suggest that AD may select for similar microbes in different anatomical locations-an "AD-like microbiome," but distinct microbial dynamics can still be observed when comparing posterior thigh to upper back. This study highlights the importance of considering the variability across skin sites when studying the development of skin inflammation.


Assuntos
Dermatite Atópica , Eczema , Microbiota , Dermatite Atópica/genética , Humanos , Pele , Staphylococcus aureus/genética
18.
Allergy ; 76(3): 804-815, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32706929

RESUMO

BACKGROUND: Nickel-induced allergic contact dermatitis (nACD) remains a major occupational skin disorder, significantly impacting the quality of life of suffering patients. Complex cellular compositional changes and associated immunological pathways are partly resolved in humans; thus, the impact of nACD on human skin needs to be further elucidated. METHODS: To decipher involved immunological players and pathways, human skin biopsies were taken at 0, 2, 48, and 96 hours after nickel patch test in six nickel-allergic patients. Gene expression profiles were analyzed via microarray. RESULTS: Leukocyte deconvolution of nACD-affected skin identified major leukocyte compositional changes at 48 and 96 hours, including natural killer (NK) cells, macrophage polarization, and T-cell immunity. Gene set enrichment analysis mirrored cellular-linked functional pathways enriched over time. NK cell infiltration and cytotoxic pathways were uniquely found in nACD-affected skin compared to sodium lauryl sulfate-induced irritant skin reactions. CONCLUSION: These results highlight key immunological leukocyte subsets as well as associated pathways in nACD, providing insights into pathophysiology with the potential to unravel novel therapeutic targets.


Assuntos
Dermatite Alérgica de Contato , Níquel , Dermatite Alérgica de Contato/genética , Perfilação da Expressão Gênica , Humanos , Níquel/efeitos adversos , Testes do Emplastro , Qualidade de Vida
19.
Proc Natl Acad Sci U S A ; 117(52): 33474-33485, 2020 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-33318199

RESUMO

Contact dermatitis tremendously impacts the quality of life of suffering patients. Currently, diagnostic regimes rely on allergy testing, exposure specification, and follow-up visits; however, distinguishing the clinical phenotype of irritant and allergic contact dermatitis remains challenging. Employing integrative transcriptomic analysis and machine-learning approaches, we aimed to decipher disease-related signature genes to find suitable sets of biomarkers. A total of 89 positive patch-test reaction biopsies against four contact allergens and two irritants were analyzed via microarray. Coexpression network analysis and Random Forest classification were used to discover potential biomarkers and selected biomarker models were validated in an independent patient group. Differential gene-expression analysis identified major gene-expression changes depending on the stimulus. Random Forest classification identified CD47, BATF, FASLG, RGS16, SYNPO, SELE, PTPN7, WARS, PRC1, EXO1, RRM2, PBK, RAD54L, KIFC1, SPC25, PKMYT, HISTH1A, TPX2, DLGAP5, TPX2, CH25H, and IL37 as potential biomarkers to distinguish allergic and irritant contact dermatitis in human skin. Validation experiments and prediction performances on external testing datasets demonstrated potential applicability of the identified biomarker models in the clinic. Capitalizing on this knowledge, novel diagnostic tools can be developed to guide clinical diagnosis of contact allergies.


Assuntos
Biomarcadores/metabolismo , Dermatite Alérgica de Contato/diagnóstico , Dermatite Irritante/diagnóstico , Aprendizado de Máquina , Adulto , Algoritmos , Alérgenos , Bases de Dados Genéticas , Dermatite Alérgica de Contato/genética , Dermatite Irritante/genética , Diagnóstico Diferencial , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Humanos , Irritantes , Leucócitos/metabolismo , Masculino , Testes do Emplastro , Reprodutibilidade dos Testes , Índice de Gravidade de Doença , Pele/patologia , Transcriptoma/genética
20.
Clin Exp Allergy ; 50(10): 1148-1158, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32865840

RESUMO

BACKGROUND: After the Second World War, the population living in the Karelian region was strictly divided by the "iron curtain" between Finland and Russia. This resulted in different lifestyle, standard of living, and exposure to the environment. Allergic manifestations and sensitization to common allergens have been much more common on the Finnish compared to the Russian side. OBJECTIVE: The remarkable allergy disparity in the Finnish and Russian Karelia calls for immunological explanations. METHODS: Young people, aged 15-20 years, in the Finnish (n = 69) and Russian (n = 75) Karelia were studied. The impact of genetic variation on the phenotype was studied by a genome-wide association analysis. Differences in gene expression (transcriptome) were explored from the blood mononuclear cells (PBMC) and related to skin and nasal epithelium microbiota and sensitization. RESULTS: The genotype differences between the Finnish and Russian populations did not explain the allergy gap. The network of gene expression and skin and nasal microbiota was richer and more diverse in the Russian subjects. When the function of 261 differentially expressed genes was explored, innate immunity pathways were suppressed among Russians compared to Finns. Differences in the gene expression paralleled the microbiota disparity. High Acinetobacter abundance in Russians correlated with suppression of innate immune response. High-total IgE was associated with enhanced anti-viral response in the Finnish but not in the Russian subjects. CONCLUSIONS AND CLINICAL RELEVANCE: Young populations living in the Finnish and Russian Karelia show marked differences in genome-wide gene expression and host contrasting skin and nasal epithelium microbiota. The rich gene-microbe network in Russians seems to result in a better-balanced innate immunity and associates with low allergy prevalence.


Assuntos
Disparidades nos Níveis de Saúde , Hipersensibilidade/epidemiologia , Imunidade Inata , Microbiota/imunologia , Adolescente , Fatores Etários , Feminino , Finlândia/epidemiologia , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla , Interações entre Hospedeiro e Microrganismos , Humanos , Hipersensibilidade/imunologia , Hipersensibilidade/microbiologia , Hipersensibilidade/virologia , Imunidade Inata/genética , Imunoglobulina E/sangue , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/microbiologia , Leucócitos Mononucleares/virologia , Masculino , Mucosa Nasal/imunologia , Mucosa Nasal/microbiologia , Mucosa Nasal/virologia , Polimorfismo de Nucleotídeo Único , Prevalência , Federação Russa/epidemiologia , Pele/imunologia , Pele/microbiologia , Pele/virologia , Transcriptoma , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA