Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
ACS Chem Biol ; 17(4): 969-986, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35378038

RESUMO

MASP-1 and MASP-2 are key activator proteases of the complement lectin pathway. The first specific mannose-binding lectin-associated serine protease (MASP) inhibitors had been developed from the 14-amino-acid sunflower trypsin inhibitor (SFTI) peptide by phage display, yielding SFTI-based MASP inhibitors, SFMIs. Here, we present the crystal structure of the MASP-1/SFMI1 complex that we analyzed in comparison to other existing MASP-1/2 structures. Rigidified backbone structure has long been accepted as a structural prerequisite for peptide inhibitors of proteases. We found that a hydrophobic cluster organized around the P2 Thr residue is essential for the structural stability of wild-type SFTI. We also found that the same P2 Thr prevents binding of the rigid SFTI-like peptides to the substrate-binding cleft of both MASPs as the cleft is partially blocked by large gatekeeper enzyme loops. Directed evolution removed this obstacle by replacing the P2 Thr with a Ser, providing the SFMIs with high-degree structural plasticity, which proved to be essential for MASP inhibition. To gain more insight into the structural criteria for SFMI-based MASP-2 inhibition, we systematically modified MASP-2-specific SFMI2 by capping its two termini and by replacing its disulfide bridge with varying length thioether linkers. By doing so, we also aimed to generate a versatile scaffold that is resistant to reducing environment and has increased stability in exopeptidase-containing biological environments. We found that the reduction-resistant disulfide-substituted l-2,3-diaminopropionic acid (Dap) variant possessed near-native potency. As MASP-2 is involved in the life-threatening thrombosis in COVID-19 patients, our synthetic, selective MASP-2 inhibitors could be relevant coronavirus drug candidates.


Assuntos
Serina Proteases Associadas a Proteína de Ligação a Manose , Peptídeos , Dissulfetos , Humanos , Lectinas , Serina Proteases Associadas a Proteína de Ligação a Manose/antagonistas & inibidores , Serina Proteases Associadas a Proteína de Ligação a Manose/química , Peptídeos/química , Peptídeos/farmacologia
2.
Database (Oxford) ; 2022(2022)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35234850

RESUMO

The postsynaptic region is the receiving part of the synapse comprising thousands of proteins forming an elaborate and dynamically changing network indispensable for the molecular mechanisms behind fundamental phenomena such as learning and memory. Despite the growing amount of information about individual protein-protein interactions (PPIs) in this network, these data are mostly scattered in the literature or stored in generic databases that are not designed to display aspects that are fundamental to the understanding of postsynaptic functions. To overcome these limitations, we collected postsynaptic PPIs complemented by a high amount of detailed structural and biological information and launched a freely available resource, the Postsynaptic Interaction Database (PSINDB), to make these data and annotations accessible. PSINDB includes tens of thousands of binding regions together with structural features, mediating and regulating the formation of PPIs, annotated with detailed experimental information about each interaction. PSINDB is expected to be useful for various aspects of molecular neurobiology research, from experimental design to network and systems biology-based modeling and analysis of changes in the protein network upon various stimuli. Database URL https://psindb.itk.ppke.hu/.


Assuntos
Mapeamento de Interação de Proteínas , Proteínas , Bases de Dados de Proteínas , Mapas de Interação de Proteínas , Proteínas/química
3.
PLoS Comput Biol ; 18(1): e1009758, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35041658

RESUMO

The postsynaptic density (PSD) is a dense protein network playing a key role in information processing during learning and memory, and is also indicated in a number of neurological disorders. Efforts to characterize its detailed molecular organization are encumbered by the large variability of the abundance of its constituent proteins both spatially, in different brain areas, and temporally, during development, circadian rhythm, and also in response to various stimuli. In this study we ran large-scale stochastic simulations of protein binding events to predict the presence and distribution of PSD complexes. We simulated the interactions of seven major PSD proteins (NMDAR, AMPAR, PSD-95, SynGAP, GKAP, Shank3, Homer1) based on previously published, experimentally determined protein abundance data from 22 different brain areas and 42 patients (altogether 524 different simulations). Our results demonstrate that the relative ratio of the emerging protein complexes can be sensitive to even subtle changes in protein abundances and thus explicit simulations are invaluable to understand the relationships between protein availability and complex formation. Our observations are compatible with a scenario where larger supercomplexes are formed from available smaller binary and ternary associations of PSD proteins. Specifically, Homer1 and Shank3 self-association reactions substantially promote the emergence of very large protein complexes. The described simulations represent a first approximation to assess PSD complex abundance, and as such, use significant simplifications. Therefore, their direct biological relevance might be limited but we believe that the major qualitative findings can contribute to the understanding of the molecular features of the postsynapse.


Assuntos
Modelos Neurológicos , Proteínas do Tecido Nervoso , Densidade Pós-Sináptica , Sinapses , Simulação por Computador , Humanos , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Densidade Pós-Sináptica/metabolismo , Densidade Pós-Sináptica/fisiologia , Sinapses/química , Sinapses/metabolismo
4.
FEBS Lett ; 596(8): 1013-1028, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35072950

RESUMO

Protein phase separation is a major governing factor in multiple cellular processes, such as RNA metabolism and those involving RNA-binding proteins. Despite many key observations, the exact structural characteristics of proteins involved in the phase separation process are still not fully deciphered. In this work, we show that proteins harbouring sequence regions with specific charged residue patterns are significantly associated with liquid-liquid phase separation. In particular, regions with repetitive arrays of alternating charges show the strongest association, whereas segments with generally high charge density and single α-helices also show detectable but weaker connections.


Assuntos
Proteínas , Proteínas/química
5.
Biomol NMR Assign ; 16(1): 121-127, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35083656

RESUMO

Shank proteins are among the most abundant and well-studied postsynaptic scaffold proteins. Their PDZ domain has unique characteristics as one of its loop regions flanking the ligand-binding site is uniquely long and has also been implicated in the formation of PDZ dimers. Here we report the initial characterization of the Shank1 PDZ domain by solution NMR spectroscopy. The assigned chemical shifts are largely consistent with the common features of PDZ domains in general and the available Shank PDZ crystal structures in particular. Our analysis suggests that under the conditions investigated, the domain is monomeric and the unique loop harbors a short helical segment, observed in only one of the known X-ray structures so far. Our work stresses the importance of solution-state investigations to fully decipher the functional relevance of the structural and dynamical features unique to Shank PDZ domains.


Assuntos
Proteínas do Tecido Nervoso , Domínios PDZ , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Proteínas do Tecido Nervoso/química , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica
6.
Biomolecules ; 11(10)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34680137

RESUMO

Ensemble-based structural modeling of flexible protein segments such as intrinsically disordered regions is a complex task often solved by selection of conformers from an initial pool based on their conformity to experimental data. However, the properties of the conformational pool are crucial, as the sampling of the conformational space should be sufficient and, in the optimal case, relatively uniform. In other words, the ideal sampling is both efficient and exhaustive. To achieve this, specialized tools are usually necessary, which might not be maintained in the long term, available on all platforms or flexible enough to be tweaked to individual needs. Here, we present an open-source and extendable pipeline to generate initial protein structure pools for use with selection-based tools to obtain ensemble models of flexible protein segments. Our method is implemented in Python and uses ChimeraX, Scwrl4, Gromacs and neighbor-dependent backbone distributions compiled and published previously by the Dunbrack lab. All these tools and data are publicly available and maintained. Our basic premise is that by using residue-specific, neighbor-dependent Ramachandran distributions, we can enhance the efficient exploration of the relevant region of the conformational space. We have also provided a straightforward way to bias the sampling towards specific conformations for selected residues by combining different conformational distributions. This allows the consideration of a priori known conformational preferences such as in the case of preformed structural elements. The open-source and modular nature of the pipeline allows easy adaptation for specific problems. We tested the pipeline on an intrinsically disordered segment of the protein Cd3ϵ and also a single-alpha helical (SAH) region by generating conformational pools and selecting ensembles matching experimental data using the CoNSEnsX+ server.


Assuntos
Biologia Computacional , Proteínas Intrinsicamente Desordenadas/ultraestrutura , Proteínas/ultraestrutura , Software/estatística & dados numéricos , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Simulação de Dinâmica Molecular , Análise de Componente Principal , Conformação Proteica , Proteínas/química , Proteínas/genética
7.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172212

RESUMO

PDZ domains are abundant interaction hubs found in a number of different proteins and they exhibit characteristic differences in their structure and ligand specificity. Their internal dynamics have been proposed to contribute to their biological activity via changes in conformational entropy upon ligand binding and allosteric modulation. Here we investigate dynamic structural ensembles of PDZ3 of the postsynaptic protein PSD-95, calculated based on previously published backbone and side-chain S2 order parameters. We show that there are distinct but interdependent structural rearrangements in PDZ3 upon ligand binding and the presence of the intramolecular allosteric modulator helix α3. We have also compared these rearrangements in PDZ1-2 of PSD-95 and the conformational diversity of an extended set of PDZ domains available in the PDB database. We conclude that although the opening-closing rearrangement, occurring upon ligand binding, is likely a general feature for all PDZ domains, the conformer redistribution upon ligand binding along this mode is domain-dependent. Our findings suggest that the structural and functional diversity of PDZ domains is accompanied by a diversity of internal motional modes and their interdependence.


Assuntos
Proteína 4 Homóloga a Disks-Large/metabolismo , Domínios PDZ/genética , Domínios PDZ/fisiologia , Sequência de Aminoácidos/genética , Animais , Sítios de Ligação/genética , Proteína 4 Homóloga a Disks-Large/genética , Proteína 4 Homóloga a Disks-Large/ultraestrutura , Entropia , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Ligação Proteica/genética
8.
Sci Rep ; 10(1): 17333, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-33060664

RESUMO

Next-generation sequencing resulted in the identification of a huge number of naturally occurring variations in human proteins. The correct interpretation of the functional effects of these variations necessitates the understanding of how they modulate protein structure. Coiled-coils are α-helical structures responsible for a diverse range of functions, but most importantly, they facilitate the structural organization of macromolecular scaffolds via oligomerization. In this study, we analyzed a comprehensive set of disease-associated germline mutations in coiled-coil structures. Our results suggest an important role of residues near the N-terminal part of coiled-coil regions, possibly critical for superhelix assembly and folding in some cases. We also show that coiled-coils of different oligomerization states exhibit characteristically distinct patterns of disease-causing mutations. Our study provides structural and functional explanations on how disease emerges through the mutation of these structural motifs.


Assuntos
Predisposição Genética para Doença , Mutação em Linhagem Germinativa , Proteínas/genética , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Conformação Proteica , Domínios Proteicos , Proteínas/química
9.
Structure ; 28(10): 1101-1113.e5, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32649858

RESUMO

Mitogen-activated protein kinases (MAPKs) control essential eukaryotic signaling pathways. While much has been learned about MAPK activation, much less is known about substrate recruitment and specificity. MAPK substrates may be other kinases that are crucial to promote a further diversification of the signaling outcomes. Here, we used a variety of molecular and cellular tools to investigate the recruitment of two substrate kinases, RSK1 and MK2, to three MAPKs (ERK2, p38α, and ERK5). Unexpectedly, we identified that kinase heterodimers form structurally and functionally distinct complexes depending on the activation state of the MAPK. These may be incompatible with downstream signaling, but naturally they may also form structures that are compatible with the phosphorylation of the downstream kinase at the activation loop, or alternatively at other allosteric sites. Furthermore, we show that small-molecule inhibitors may affect the quaternary arrangement of kinase heterodimers and thus influence downstream signaling in a specific manner.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/química , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/química , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases S6 Ribossômicas 90-kDa/química , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Ativação Enzimática , Células HEK293 , Humanos , Espectroscopia de Ressonância Magnética , Proteína Quinase 1 Ativada por Mitógeno/química , Proteína Quinase 1 Ativada por Mitógeno/genética , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 14 Ativada por Mitógeno/antagonistas & inibidores , Proteína Quinase 14 Ativada por Mitógeno/química , Proteína Quinase 14 Ativada por Mitógeno/genética , Proteína Quinase 14 Ativada por Mitógeno/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/química , Proteína Quinase 7 Ativada por Mitógeno/genética , Proteína Quinase 7 Ativada por Mitógeno/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Fosforilação , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Multimerização Proteica , Estrutura Quaternária de Proteína , Espalhamento a Baixo Ângulo , Difração de Raios X
10.
Front Chem ; 8: 180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32257998

RESUMO

AAI, the major alpha-amylase inhibitor (AAI) present in the seeds of the Mexican crop plant Amaranthus hypocondriacus is a 32-residue-long polypeptide with three disulfide bridges. Its structure is most closely related to the plant amylase inhibitor subfamily of knottins characterized by a topological knot formed by one disulfide bridge threading through a loop formed by the peptide chain as well as a short three-stranded beta sandwich core. AAI is specific against insect amylases and does not act on corresponding human or mammalian enzymes. It was found that the oxidative folding of AAI seems to follow a hirudine-like pathway with many non-native intermediates, but notably it proceeds through a major folding intermediate (MFI) that contains a vicinal disulfide bridge. Based on a review of the pertinent literature, the known vicinal disulfides in native proteins as well as well as the network of disulfide interchanges, we propose that MFI is a kinetic trap corresponding to a compact molten globule-like state which constrains the peptide chain to a smaller number of conformations that in turn can be rapidly funneled toward the native state.

11.
Methods Mol Biol ; 2112: 43-57, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006277

RESUMO

The functional diversity of proteins is closely related to their differences in sequence and structure. Despite variations in functional sites, global structural similarity is a valuable source of information when assessing potential functional similarities between proteins. The CATH database contains a well-established hierarchical classification of more than 430,000 protein domain structures and nearly 95 million protein domain sequences, with integrated functional annotations for each represented family. The present chapter provides an overview of the main features of CATH with emphasis on exploiting structural similarities to obtain functional information for proteins.


Assuntos
Proteínas/química , Análise de Sequência de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Bases de Dados de Proteínas , Estrutura Terciária de Proteína
12.
Methods Mol Biol ; 2112: 241-254, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32006289

RESUMO

Understanding protein function at atomistic detail is not possible without accounting for the internal dynamics of these molecules. Ensemble-based models are based on the premise that single conformers cannot account for all experimental observations on the given molecule. Rather, a suitable set of structures, representing the internal dynamics of the protein at a given timescale, are necessary to achieve correspondence to measurements. CoNSEnsX+ is a service specifically designed for the investigation of such ensembles for compliance with NMR-derived parameters. In contrast to common structure evaluation tools, all parameters are treated as an average over the ensemble, if are not themselves an ensemble property like order parameters. CoNSEnsX+ is also capable of selecting a sub-ensemble with increased correspondence to a set of user-defined experimental parameters. CoNSEnsX+ is available as a web server at http://consensx.itk.ppke.hu , and the full Python source code is available on GitHub.


Assuntos
Simulação de Acoplamento Molecular/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Conformação Proteica , Proteínas/química , Simulação de Dinâmica Molecular , Software
13.
Brief Bioinform ; 21(2): 458-472, 2020 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-30698641

RESUMO

There are multiple definitions for low complexity regions (LCRs) in protein sequences, with all of them broadly considering LCRs as regions with fewer amino acid types compared to an average composition. Following this view, LCRs can also be defined as regions showing composition bias. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, and more generally the overlaps between different properties related to LCRs, using examples. We argue that statistical measures alone cannot capture all structural aspects of LCRs and recommend the combined usage of a variety of predictive tools and measurements. While the methodologies available to study LCRs are already very advanced, we foresee that a more comprehensive annotation of sequences in the databases will enable the improvement of predictions and a better understanding of the evolution and the connection between structure and function of LCRs. This will require the use of standards for the generation and exchange of data describing all aspects of LCRs. SHORT ABSTRACT: There are multiple definitions for low complexity regions (LCRs) in protein sequences. In this critical review, we focus on the definition of sequence complexity of LCRs and their connection with structure. We present statistics and methodological approaches that measure low complexity (LC) and related sequence properties. Composition bias is often associated with LC and disorder, but repeats, while compositionally biased, might also induce ordered structures. We illustrate this dichotomy, plus overlaps between different properties related to LCRs, using examples.


Assuntos
Proteínas/química , Algoritmos , Sequência de Aminoácidos , Bases de Dados de Proteínas , Evolução Molecular , Conformação Proteica , Domínios Proteicos
14.
FEBS Lett ; 594(5): 887-902, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31562775

RESUMO

The postsynaptic density protein-95 (PSD-95) regulates synaptic plasticity through interactions mediated by its peptide-binding PDZ domains. The two N-terminal PDZ domains of PSD-95 form an autonomous structural unit, and their interdomain orientation and dynamics depend on ligand binding. To understand the mechanistic details of the effect of ligand binding, we generated conformational ensembles using available experimentally determined nuclear Overhauser effect interatomic distances and S2 order parameters. In our approach, the fast dynamics of the two domains is treated independently. We find that intradomain structural changes induced by ligand binding modulate the probability of the occurrence of specific domain-domain orientations. Our results suggest that the ß2-ß3 loop in the PDZ domains is a key regulatory region, which influences both intradomain motions and supramodular rearrangement.


Assuntos
Proteína 4 Homóloga a Disks-Large/química , Proteína 4 Homóloga a Disks-Large/metabolismo , Sítios de Ligação , Humanos , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Domínios PDZ , Ligação Proteica , Conformação Proteica
15.
PLoS One ; 14(5): e0216142, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31075121

RESUMO

Gastrotropin, the intracellular carrier of bile salts in the small intestine, binds two ligand molecules simultaneously in its internal cavity. The molecular rearrangements required for ligand entry are not yet fully clear. To improve our understanding of the binding process we combined molecular dynamics simulations with previously published structural and dynamic NMR parameters. The resulting ensembles reveal two distinct modes of barrel opening with one corresponding to the transition between the apo and holo states, whereas the other affecting different protein regions in both ligation states. Comparison of the calculated structures with NMR-derived parameters reporting on slow conformational exchange processes suggests that the protein undergoes partial unfolding along a path related to the second mode of the identified barrel opening motion.


Assuntos
Proteínas de Ligação a Ácido Graxo/metabolismo , Hormônios Gastrointestinais/metabolismo , Ligação Proteica/fisiologia , Ácidos e Sais Biliares/metabolismo , Humanos , Ligantes , Espectroscopia de Ressonância Magnética/métodos , Simulação de Dinâmica Molecular , Dobramento de Proteína
16.
Entropy (Basel) ; 21(8)2019 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-33267475

RESUMO

The human postsynaptic density is an elaborate network comprising thousands of proteins, playing a vital role in the molecular events of learning and the formation of memory. Despite our growing knowledge of specific proteins and their interactions, atomic-level details of their full three-dimensional structure and their rearrangements are mostly elusive. Advancements in structural bioinformatics enabled us to depict the characteristic features of proteins involved in different processes aiding neurotransmission. We show that postsynaptic protein-protein interactions are mediated through the delicate balance of intrinsically disordered regions and folded domains, and this duality is also imprinted in the amino acid sequence. We introduce Diversity of Potential Interactions (DPI), a structure and regulation based descriptor to assess the diversity of interactions. Our approach reveals that the postsynaptic proteome has its own characteristic features and these properties reliably discriminate them from other proteins of the human proteome. Our results suggest that postsynaptic proteins are especially susceptible to forming diverse interactions with each other, which might be key in the reorganization of the postsynaptic density (PSD) in molecular processes related to learning and memory.

17.
J Struct Biol ; 204(1): 109-116, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29908248

RESUMO

Single alpha-helices (SAHs) are increasingly recognized as important structural and functional elements of proteins. Comprehensive identification of SAH segments in large protein datasets was largely hindered by the slow speed of the most restrictive prediction tool for their identification, FT_CHARGE on common hardware. We have previously implemented an FPGA-based version of this tool allowing fast analysis of a large number of sequences. Using this implementation, we have set up of a semi-automated pipeline capable of analyzing full UniProt releases in reasonable time and compiling monthly updates of a comprehensive database of SAH segments. Releases of this database, denoted CSAHDB, is available on the CSAHserver 2 website at csahserver.itk.ppke.hu. An overview of human SAH-containing sequences combined with a literature survey suggests specific roles of SAH segments in proteins involved in RNA-based regulation processes as well as cytoskeletal proteins, a number of which is also linked to the development and function of synapses.


Assuntos
Proteínas/química , Bases de Dados Factuais , Humanos , Conformação Proteica em alfa-Hélice , Estrutura Secundária de Proteína
18.
Sci Rep ; 8(1): 1751, 2018 01 29.
Artigo em Inglês | MEDLINE | ID: mdl-29379111

RESUMO

Small, cysteine-rich and cationic proteins with antimicrobial activity are produced by diverse organisms of all kingdoms and represent promising molecules for drug development. The ancestor of all industrial penicillin producing strains, the ascomycete Penicillium chryosgenum Q176, secretes the extensively studied antifungal protein PAF. However, the genome of this strain harbours at least two more genes that code for other small, cysteine-rich and cationic proteins with potential antifungal activity. In this study, we characterized the pafB gene product that shows high similarity to PgAFP from P. chrysogenum R42C. Although abundant and timely regulated pafB gene transcripts were detected, we could not identify PAFB in the culture broth of P. chrysogenum Q176. Therefore, we applied a P. chrysogenum-based expression system to produce sufficient amounts of recombinant PAFB to address unanswered questions concerning the structure and antimicrobial function. Nuclear magnetic resonance (NMR)-based analyses revealed a compact ß-folded structure, comprising five ß-strands connected by four solvent exposed and flexible loops and an "abcabc" disulphide bond pattern. We identified PAFB as an inhibitor of growth of human pathogenic moulds and yeasts. Furthermore, we document for the first time an anti-viral activity for two members of the small, cysteine-rich and cationic protein group from ascomycetes.


Assuntos
Antibacterianos/química , Cisteína/química , Penicillium chrysogenum/química , Antifúngicos/química , Cátions/química , Proteínas Fúngicas/química , Penicilinas/química
19.
J Chem Inf Model ; 57(8): 1728-1734, 2017 08 28.
Artigo em Inglês | MEDLINE | ID: mdl-28703583

RESUMO

Ensemble-based models of protein structure and dynamics reflecting experimental parameters are increasingly used to obtain deeper understanding of the role of dynamics in protein function. Such ensembles differ substantially from those routinely deposited in the PDB and, consequently, require specialized validation and analysis methodology. Here we describe our completely rewritten online validation tool, CoNSEnsX+, that offers a standardized way to assess the correspondence of such ensembles to experimental NMR parameters. The server provides a novel selection feature allowing a user-selectable set and weights of different parameters to be considered. This also offers an approximation of potential overfitting, namely, whether the number of conformers necessary to reflect experimental parameters can be reduced in the ensemble provided. The CoNSEnsX+ webserver is available at consensx.itk.ppke.hu . The corresponding Python source code is freely available on GitHub ( github.com/PPKE-Bioinf/consensx.itk.ppke.hu ).


Assuntos
Internet , Modelos Moleculares , Proteínas/química , Proteínas/metabolismo , Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase de Interação com NIMA/metabolismo , Ressonância Magnética Nuclear Biomolecular , Estrutura Secundária de Proteína
20.
Sci Rep ; 7: 44504, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28300139

RESUMO

Parvulins or rotamases form a distinct group within peptidyl prolyl cis-trans isomerases. Their exact mode of action as well as the role of conserved residues in the family are still not unambiguously resolved. Using backbone S2 order parameters and NOEs as restraints, we have generated dynamic structural ensembles of three distinct parvulins, SaPrsA, TbPin1 and CsPinA. The resulting ensembles are in good agreement with the experimental data but reveal important differences between the three enzymes. The largest difference can be attributed to the extent of the opening of the substrate binding cleft, along which motional mode the three molecules occupy distinct regions. Comparison with a wide range of other available parvulin structures highlights structural divergence along the bottom of the binding cleft acting as a hinge during the opening-closing motion. In the prototype WW-domain containing parvulin, Pin1, this region is also important in forming contacts with the WW domain known to modulate enzymatic activity of the catalytic domain. We hypothesize that modulation of the extent and dynamics of the identified 'breathing motion' might be one of the factors responsible for functional differences in the distinct parvulin subfamilies.


Assuntos
Peptidilprolil Isomerase de Interação com NIMA/química , Peptidilprolil Isomerase/química , Conformação Proteica , Sequência de Aminoácidos , Archaea/enzimologia , Humanos , Peptidilprolil Isomerase de Interação com NIMA/genética , Peptidilprolil Isomerase/genética , Ligação Proteica , Staphylococcus aureus/enzimologia , Trypanosoma brucei brucei/enzimologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA