Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(1)2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33406792

RESUMO

The theoretical study of chrysanthemin (cyanidin 3-glucoside) as a pigment for TiO2-based dye-sensitized solar cells (DSSCs) was performed with the GAUSSSIAN 09 simulation. The electronic spectra of neutral and anionic chrysanthemin molecules were calculated by density functional theory with B3LYP functional and DGDZVP basis set. A better energy level alignment was found for partially deprotonated molecules of chrysanthemin, with the excited photoelectron having enough energy in order to be transferred to the conduction band of TiO2 semiconductor in DSSCs. In addition, we used the raw aqueous extracts of roselle (Hibiscus sabdariffa) calyces as the source of chrysanthemin and the extracts with various pH values were tested in DSSCs. The extracts and photosensitized semiconductor layers were characterized by UV-Vis spectroscopy, and DSSCs based on raw extracts were characterized by current density-voltage measurements.


Assuntos
Chrysanthemum/química , Corantes/química , Simulação por Computador , Fontes de Energia Elétrica , Extratos Vegetais/química , Energia Solar , Titânio/química
2.
Nanomaterials (Basel) ; 9(5)2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31096586

RESUMO

We report on the fabrication of dye-sensitized solar cells with a TiO2 buffer layer between the transparent conductive oxide substrate and the mesoporous TiO2 film, in order to improve the photovoltaic conversion efficiency of the device. The buffer layer was fabricated by pulsed laser deposition whereas the mesoporous film by the doctor blade method, using TiO2 paste obtained by the sol-gel technique. The buffer layer was deposited in either oxygen (10 Pa and 50 Pa) or argon (10 Pa and 50 Pa) onto transparent conducting oxide glass kept at room temperature. The cross-section scanning electron microscopy image showed differences in layer morphology and thickness, depending on the deposition conditions. Transmission electron microscopy studies of the TiO2 buffer layers indicated that films consisted of grains with typical diameters of 10 nm to 30 nm. We found that the photovoltaic conversion efficiencies, determined under standard air mass 1.5 global (AM 1.5G) conditions, of the solar cells with a buffer layer are more than two times larger than those of the standard cells. The best performance was reached for buffer layers deposited at 10 Pa O2. We discuss the processes that take place in the device and emphasize the role of the brush-like buffer layer in the performance increase.

3.
Beilstein J Nanotechnol ; 5: 1016-30, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25161837

RESUMO

We report results of density functional theory (DFT) calculations on some colorless aromatic systems adsorbed on a TiO2 nanocluster, in order to explain experimental results regarding the photocatalytic degradation of these pollutants under visible light irradiation. Based on our modeling, we are able to clarify why transparent pollutants can degrade under visible light in the presence of a catalyst that absorbs only in the UV, to explain experimental data regarding differences in the efficiency of the degradation process, and to state the key requirements for effective water-cleaning. For that purpose, we analyze the absorption spectrum of the free and adsorbed molecules, the binding configurations, the matching of the energy levels with the oxide catalyst and the likelihood of the charge-transfer to the substrate. The comparison between several colorless aniline and phenolic systems allows a correlation between the chemical structure and the degradation rate of these pollutants.

4.
Materials (Basel) ; 6(6): 2372-2392, 2013 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-28809278

RESUMO

Coumarin-based dyes have been successfully used in dye-sensitized solar cells, leading to photovoltaic conversion efficiencies of up to about 8%. Given the need to better understand the behavior of the dye adsorbed on the TiO2 nanoparticle, we report results of density functional theory (DFT) and time-dependent DFT (TD-DFT) studies of several coumarin-based dyes, as well as complex systems consisting of the dye bound to a TiO2 cluster. We provide the electronic structure and simulated UV-Vis spectra of the dyes alone and adsorbed to the cluster and discuss the matching with the solar spectrum. We display the energy level diagrams and the electron density of the key molecular orbitals and analyze the electron transfer from the dye to the oxide. Finally, we compare our theoretical results with the experimental data available and discuss the key issues that influence the device performance.

5.
Inorg Chem ; 51(1): 40-50, 2012 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-22148713

RESUMO

The synthesis and characterization of two Fe-Gd systems based on bpca(-) (Hbpca = bis(2-pyridilcarbonyl)amine) as bridging ligand is presented, taking the systems as a case study for structure-property correlations. Compound 1, [Fe(LS)(II)(µ-bpca)(2)Gd(NO(3))(2)(H(2)O)]NO(3)·2CH(3)NO(2), is a zigzag polymer, incorporating the diamagnetic low spin Fe(LS)(II) ion. The magnetism of 1 is entirely determined by the weak zero field splitting (ZFS) effect on the Gd(III) ion. Compound 2 is a Fe(III)-Gd(III) dinuclear compound, [Fe(LS)(III)(bpca)(µ-bpca)Gd(NO(3))(4)]·4CH(3)NO(2)·CH(3)OH, its magnetism being interpreted as due to the antiferromagnetic coupling between the S(Fe) = ½ and S(Gd) = 7/2 spins, interplayed with the local ZFS on the lanthanide center. In both systems, the d-f assembly is determined by the bridging capabilities of the ambidentate bpca(-) ligand, which binds the d ion by a tridentate moiety with nitrogen donors and the f center by the diketonate side. We propose a spin delocalization and polarization mechanism that rationalizes the factors leading to the antiferromagnetic d-f coupling. Although conceived for compound 2, the scheme can be proposed as a general mechanism. The rationalization of the weak ZFS effects on Gd(III) by multiconfiguration and spin-orbit ab initio calculations allowed us to determine the details of the small but still significant anisotropy of Gd(III) ion in the coordination sites of compounds 1 and 2. The outlined methodologies and generalized conclusions shed new light on the field of gadolinium coordination magnetochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA