Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Curr Med Chem ; 29(9): 1503-1542, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34963430

RESUMO

DNA is packaged in an octamer of histones, forming chromatin, a complex of DNA and proteins. The structural matrix of a chromosome, chromatin and its changes are now regarded as important factors in controlling gene expression, which has sparked a lot of interest in understanding genetic pathways governing various diseases, including cancer. DNA methylation in the CpG dinucleotide as a transcriptional silencing mechanism, post-translational histone modifications such as acetylation, methylation, and others that affect chromatin structure, ATP-dependent chromatin remodelling, and miRNA-mediated gene silencing are all found to be important in various types of cancer. In this review, we analyze the main alterations in gene expression, epigenetic modification patterns in cancer cells, the main modulators and inhibitors of each epigenetic mechanism, and the molecular evolution of the most representative inhibitors, all of which point to a promising future for HAT, HDAC, non-glycoside DNMT inhibitors, and domain inhibitors.


Assuntos
Epigênese Genética , Neoplasias , Acetilação , Cromatina , Metilação de DNA , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Histonas/metabolismo , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
2.
Mini Rev Med Chem ; 22(6): 848-864, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34856897

RESUMO

Some bacterial species use a cell-to-cell communication mechanism called Quorum Sensing (QS). Bacteria release small diffusible molecules, usually termed signals which allow the activation of beneficial phenotypes that guarantee bacterial survival and the expression of a diversity of virulence genes in response to an increase in population density. The study of the molecular mechanisms that relate signal molecules with bacterial pathogenesis is an area of growing interest due to its use as a possible therapeutic alternative through the development of synthetic analogues of autoinducers as a strategy to regulate bacterial communication as well as the study of bacterial resistance phenomena, the study of these relationships is based on the structural diversity of natural or synthetic autoinducers and their ability to inhibit bacterial QS, which can be approached with a molecular perspective from the following topics: i) Molecular signals and their role in QS regulation; ii) Strategies in the modulation of Quorum Sensing; iii) Analysis of Bacterial QS circuit regulation strategies; iv) Structural evolution of natural and synthetic autoinducers as QS regulators. This mini-review allows a molecular view of the QS systems, showing a perspective on the importance of the molecular diversity of autoinducer analogs as a strategy for the design of new antimicrobial agents.


Assuntos
Anti-Infecciosos , Percepção de Quorum , Antibacterianos/farmacologia , Anti-Infecciosos/farmacologia , Bactérias/metabolismo , Proteínas de Bactérias/metabolismo , Percepção de Quorum/genética , Virulência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA