Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
PLoS One ; 18(3): e0282499, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36867648

RESUMO

Aspergillus fumigatus is a ubiquitous fungus, a saprophyte of plants, and an opportunistic pathogen of humans. Azole fungicides are used in agriculture to control plant pathogens, and azoles are also used as a first line of treatment for aspergillosis. The continued exposure of A. fumigatus to azoles in the environment has likely led to azole resistance in the clinic where infections result in high levels of mortality. Pan-azole resistance in environmental isolates is most often associated with tandem-repeat (TR) mutations containing 34 or 46 nucleotides in the cyp51A gene. Because the rapid detection of resistance is important for public health, PCR-based techniques have been developed to detect TR mutations in clinical samples. We are interested in identifying agricultural environments conducive to resistance development, but environmental surveillance of resistance has focused on labor-intensive isolation of the fungus followed by screening for resistance. Our goal was to develop assays for the rapid detection of pan-azole-resistant A. fumigatus directly from air, plants, compost, and soil samples. To accomplish this, we optimized DNA extractions for air filters, soil, compost, and plant debris and standardized two nested-PCR assays targeting the TR mutations. Sensitivity and specificity of the assays were tested using A. fumigatus DNA from wild type and TR-based resistant isolates and with soil and air filters spiked with conidia of the same isolates. The nested-PCR assays were sensitive to 5 fg and specific to A. fumigatus without cross-reaction with DNA from other soil microorganisms. Environmental samples from agricultural settings in Georgia, USA were sampled and tested. The TR46 allele was recovered from 30% of samples, including air, soil and plant debris samples from compost, hibiscus and hemp. These assays allow rapid surveillance of resistant isolates directly from environmental samples improving our identification of hotspots of azole-resistant A. fumigatus.


Assuntos
Compostagem , Solo , Humanos , Aspergillus fumigatus , Azóis , Farmacorresistência Fúngica , Proteínas Fúngicas
2.
Membranes (Basel) ; 12(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35629809

RESUMO

Histoplasma capsulatum is a dimorphic, thermal, and nutritional fungus. In the environment and at an average temperature of 28 °C, it develops as a mold that is composed of infecting particles. Once in the host or in cultures at 37 °C, it undergoes a transition into the parasitic form. In the present work, we performed chemical extraction and characterization using chromatography techniques of the associated lipid composition of the external surface of the cell wall of the mycelial phase of two isolates of the H. capsulatum: one clinical and one environmental. Several differences were evidenced in the fatty acids in the phospholipid composition. Surface pressure-area isotherms and compression module curves of the Amphotericin B and lipid extract monolayers, as well as (AmB)-lipid extract mixed monolayers were recorded. Results show a high affinity of AmB towards lipid extracts. The most stable monolayers were formed by AmB + environmental with a mass ratio of 1:3 and AmB + clinical with a mass ratio of 1:2. Knowledge of the AmB aggregation processes at a molecular level and the characterization of the lipid extracts allows the possibility to understand the interaction between the AmB and the lipid fractions of H. capsulatum.

4.
PLoS Pathog ; 17(7): e1009711, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324607

RESUMO

Aspergillus fumigatus is an opportunistic human pathogen that causes aspergillosis, a spectrum of environmentally acquired respiratory illnesses. It has a cosmopolitan distribution and exists in the environment as a saprotroph on decaying plant matter. Azoles, which target Cyp51A in the ergosterol synthesis pathway, are the primary class of drugs used to treat aspergillosis. Azoles are also used to combat plant pathogenic fungi. Recently, an increasing number of azole-naive patients have presented with pan-azole-resistant strains of A. fumigatus. The TR34/L98H and TR46/Y121F/T289A alleles in the cyp51A gene are the most common ones conferring pan-azole resistance. There is evidence that these mutations arose in agricultural settings; therefore, numerous studies have been conducted to identify azole resistance in environmental A. fumigatus and to determine where resistance is developing in the environment. Here, we summarize the global occurrence of azole-resistant A. fumigatus in the environment based on available literature. Additionally, we have created an interactive world map showing where resistant isolates have been detected and include information on the specific alleles identified, environmental settings, and azole fungicide use. Azole-resistant A. fumigatus has been found on every continent, except for Antarctica, with the highest number of reports from Europe. Developed environments, specifically hospitals and gardens, were the most common settings where azole-resistant A. fumigatus was detected, followed by soils sampled from agricultural settings. The TR34/L98H resistance allele was the most common in all regions except South America where the TR46/Y121F/T289A allele was the most common. A major consideration in interpreting this survey of the literature is sampling bias; regions and environments that have been extensively sampled are more likely to show greater azole resistance even though resistance could be more prevalent in areas that are under-sampled or not sampled at all. Increased surveillance to pinpoint reservoirs, as well as antifungal stewardship, is needed to preserve this class of antifungals for crop protection and human health.


Assuntos
Aspergilose/microbiologia , Aspergillus fumigatus/genética , Farmacorresistência Fúngica/genética , Animais , Antifúngicos , Azóis , Reservatórios de Doenças , Humanos
5.
Acta biol. colomb ; 20(3): 181-192, jul.-set. 2015. ilus, tab
Artigo em Inglês | LILACS | ID: biblio-949317

RESUMO

In order to assess the antifungal activity of methanolic extracts from neem tree (Azadirachta indica A. Juss.), several bioassays were conducted following M38-A2 broth microdilution method on 14 isolates of the dermatophytes Trichophytonmentagrophytes, Trichophyton rubrum, Microsporum canis and Epidermophyton floccosum. Neem extracts were obtained through methanol-hexane partitioning of mature green leaves and seed oil. Furthermore, high performance liquid chromatography (HPLC) analyses were carried out to relate the chemical profile with their content of terpenoids, ofwidely known antifungal activity. The antimycotic Terbinafine served as a positive control. Results showed that there was total growth inhibition of the dermatophytes isolates at minimal inhibitory concentrations (MIC) between 50 μg/mL and 200 μg/mL for leaves extract, and between 625 μg/mL and 2500 μg/mL for seed oil extract. The MIC of positive control (Terbinafine) ranged between 0.0019 μg/mL and 0.0313 μg/mL. Both neem leaves and seed oil methanol extracts exhibited different chromatographic profiles by HPLC, which could explain the differences observed in their antifungal activity. This analysis revealed the possible presence of terpenoids in both extracts, which are known to have biological activity. The results of this research are a new report on the therapeutic potential of neem to the control of dermatophytosis.


Se determinó la actividad antifúngica de extractos metanólicos de la especie Azadirachta indica A. Juss. (Meliaceae), conocida comúnmente como neem, empleando el método de microdilución en caldo M38-A2 de referencia para hongos filamentosos y dermatofitos. Se evaluaron 14 aislamientos de los dermatofitos Trichophyton mentagrophytes, Trichophyton rubrum, Microsporum canis y Epidermophyton floccosum. Los extractos de neem fueron obtenidos mediante partición metanol-hexano a partir de aceite de semillas y hojas verdes maduras. Adicionalmente, se analizaron por cromatografía líquida de alta resolución (CLAR) con el fin de relacionar su perfil químico con el contenido de terpenoides, de conocida actividad antifúngica. Se empleó como control positivo el antimicótico Terbinafina. Los resultados mostraron inhibición total del crecimiento de los aislamientos de dermatofitos a concentraciones mínimas inhibitorias (CMI) entre 50 μg/mL y 200 μg/mL para el extracto de hojas y entre 625 μg/mL y 2500 μg/mL para el extracto de aceite de semillas. La CMI encontrada para el control positivo (Terbinafina) fluctuó entre 0,0078 μg/mL y 0,0313 μg/mL. Los extractos metanólicos de hojas y aceite de semillas de neem exhibieron diferentes perfiles cromatográficos en CLAR, lo cual podría explicar las diferencias observadas en su actividad antifúngica. Éste análisis químico reveló la posible presencia de compuestos terpenoides en ambos extractos, los cuales se conocen por su actividad biológica. Los resultados de esta investigación son un nuevo aporte sobre el potencial terapéutico del neem para el control de dermatofitosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA