Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Clin Chem Lab Med ; 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38353147

RESUMO

OBJECTIVES: Increased levels of glial fibrillary acidic protein (GFAP) in blood have been identified as a valuable biomarker for some neurological disorders, such as Alzheimer's disease and multiple sclerosis. However, most blood GFAP quantifications so far were performed using the same bead-based assay, and to date a routine clinical application is lacking. METHODS: In this study, we validated a novel second-generation (2nd gen) Ella assay to quantify serum GFAP. Furthermore, we compared its performance with a bead-based single molecule array (Simoa) and a homemade GFAP assay in a clinical cohort of neurological diseases, including 210 patients. RESULTS: Validation experiments resulted in an intra-assay variation of 10 %, an inter-assay of 12 %, a limit of detection of 0.9 pg/mL, a lower limit of quantification of 2.8 pg/mL, and less than 20 % variation in serum samples exposed to up to five freeze-thaw cycles, 120 h at 4 °C and room temperature. Measurement of the clinical cohort using all assays revealed the same pattern of GFAP distribution in the different diagnostic groups. Moreover, we observed a strong correlation between the 2nd gen Ella and Simoa (r=0.91 (95 % CI: 0.88-0.93), p<0.0001) and the homemade immunoassay (r=0.77 (95 % CI: 0.70-0.82), p<0.0001). CONCLUSIONS: Our results demonstrate a high reliability, precision and reproducibility of the 2nd gen Ella assay. Although a higher assay sensitivity for Simoa was observed, the new microfluidic assay might have the potential to be used for GFAP analysis in daily clinical workups due to its robustness and ease of use.

2.
J Neurol ; 271(4): 1999-2009, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38157030

RESUMO

BACKGROUND: Neuronal pentraxin-2 (NPTX2), crucial for synaptic functioning, declines in cerebrospinal fluid (CSF) as cognition deteriorates. The variations of CSF NPTX2 across mild cognitive impairment (MCI) due to Alzheimer's disease (AD) and its association with brain metabolism remain elusive, albeit relevant for patient stratification and pathophysiological insights. METHODS: We retrospectively analyzed 49 MCI-AD patients grouped by time until dementia (EMCI, n = 34 progressing within 2 years; LMCI, n = 15 progressing later/stable at follow-up). We analyzed demographic variables, cognitive status (MMSE score), and CSF NPTX2 levels using a commercial ELISA assay in EMCI, LMCI, and a control group of age-/sex-matched individuals with other non-dementing disorders (OND). Using [18F]FDG PET scans for voxel-based analysis, we explored correlations between regional brain metabolism metrics and CSF NPTX2 levels in MCI-AD patients, accounting for age. RESULTS: Baseline and follow-up MMSE scores were lower in LMCI than EMCI (p value = 0.006 and p < 0.001). EMCI exhibited significantly higher CSF NPTX2 values than both LMCI (p = 0.028) and OND (p = 0.006). We found a significant positive correlation between NPTX2 values and metabolism of bilateral precuneus in MCI-AD patients (p < 0.005 at voxel level, p < 0.05 with family-wise error correction at the cluster level). CONCLUSIONS: Higher CSF NPTX2 in EMCI compared to controls and LMCI suggests compensatory synaptic responses to initial AD pathology. Disease progression sees these mechanisms overwhelmed, lowering CSF NPTX2 approaching dementia. Positive CSF NPTX2 correlation with precuneus glucose metabolism links to AD-related metabolic changes across MCI course. These findings posit CSF NPTX2 as a promising biomarker for both AD staging and progression risk stratification.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Estudos Retrospectivos , Biomarcadores/líquido cefalorraquidiano , Encéfalo/patologia , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/líquido cefalorraquidiano , Progressão da Doença
3.
Mol Cell Proteomics ; 22(10): 100629, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37557955

RESUMO

Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.


Assuntos
Doença de Alzheimer , Humanos , Encéfalo , Biomarcadores , Neurônios , Medicina de Precisão , Peptídeos beta-Amiloides
4.
Front Mol Biosci ; 10: 1175230, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37168256

RESUMO

Introduction: A rapid and reliable detection of glial fibrillary acidic protein (GFAP) in biological samples could assist in the diagnostic evaluation of neurodegenerative disorders. Sensitive assays applicable in the routine setting are needed to validate the existing GFAP tests. This study aimed to develop a highly sensitive and clinically applicable microfluidic immunoassay for the measurement of GFAP in blood. Methods: A microfluidic GFAP assay was developed and validated regarding its performance. Subsequently, serum and cerebrospinal fluid (CSF) of Alzheimer's disease (AD), Multiple Sclerosis (MS) and control patients were analyzed with the established assay, and levels were compared to the commercial GFAP Simoa discovery kit. Results: The developed GFAP assay showed a good performance with a recovery of 85% of spiked GFAP in serum and assay variations below 15%. The established assay was highly sensitive with a calculated lower limit of quantification and detection of 7.21 pg/mL and 2.37 pg/mL, respectively. GFAP levels were significantly increased in AD compared to control patients with advanced age (p = 0.002). However, GFAP levels revealed no significant increase in MS compared to control patients in the same age range (p = 0.140). Furthermore, serum GFAP levels evaluated with the novel microfluidic assay strongly correlated with Simoa concentrations (r = 0.88 (95% CI: 0.81-0.93), p < 0.0001). Conclusion: We successfully developed a sensitive and easy-to-use microfluidic assay to measure GFAP in blood. Furthermore, we could confirm previous findings of elevated GFAP levels in AD by applying the assay in a cohort of clinically characterized patients.

5.
J Psychiatr Res ; 156: 390-397, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36323141

RESUMO

Psychiatric disorders are widely underreported diseases, especially in their early stages. So far, there is no fluid biomarker to confirm the diagnosis of these disorders. Proteomics data suggest the synaptic protein glutamate receptor 4 (GluR4), part of the AMPA receptor, as a potential diagnostic biomarker of major depressive disorder (MDD). A novel sandwich ELISA was established and analytically validated to detect GluR4 in cerebrospinal fluid (CSF) samples. A total of 85 subjects diagnosed with MDD (n = 36), bipolar disorder (BD, n = 12), schizophrenia (SCZ, n = 12) and neurological controls (CON, n = 25) were analysed. The data exhibited a significant correlation (r = 0.74; CI:0.62 to 0.82; p < 0.0001) with the antibody-free multiple reaction monitoring (MRM) mass spectrometry (MS) data. CSF GluR4 levels were lower in MDD (p < 0.002) and BD (p = 0.012) than in CON. Moreover, subjects with SCZ described a trend towards lower levels than CON (p = 0.13). The novel GluR4 ELISA may favour the clinical application of this protein as a potential diagnostic biomarker of psychiatric disorders and may facilitate the understanding of the pathophysiological mechanisms behind these disorders.


Assuntos
Transtorno Depressivo Maior , Humanos , Transtorno Depressivo Maior/diagnóstico , Proteômica , Receptores de Glutamato
6.
Front Neurol ; 13: 890638, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903119

RESUMO

Proteomics studies have shown differential expression of numerous proteins in dementias but have rarely led to novel biomarker tests for clinical use. The Marie Curie MIRIADE project is designed to experimentally evaluate development strategies to accelerate the validation and ultimate implementation of novel biomarkers in clinical practice, using proteomics-based biomarker development for main dementias as experimental case studies. We address several knowledge gaps that have been identified in the field. First, there is the technology-translation gap of different technologies for the discovery (e.g., mass spectrometry) and the large-scale validation (e.g., immunoassays) of biomarkers. In addition, there is a limited understanding of conformational states of biomarker proteins in different matrices, which affect the selection of reagents for assay development. In this review, we aim to understand the decisions taken in the initial steps of biomarker development, which is done via an interim narrative update of the work of each ESR subproject. The results describe the decision process to shortlist biomarkers from a proteomics to develop immunoassays or mass spectrometry assays for Alzheimer's disease, Lewy body dementia, and frontotemporal dementia. In addition, we explain the approach to prepare the market implementation of novel biomarkers and assays. Moreover, we describe the development of computational protein state and interaction prediction models to support biomarker development, such as the prediction of epitopes. Lastly, we reflect upon activities involved in the biomarker development process to deduce a best-practice roadmap for biomarker development.

7.
Neurobiol Aging ; 117: 212-221, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35780561

RESUMO

We explored the brain metabolism correlates of emergent cerebrospinal fluid (CSF) biomarkers in a group of 26 patients with prodromal Alzheimer's disease (AD). Distinct volumes of interest (VOIs) expressed the sites of correlation between CSF biomarkers and brain metabolism as determined on [18F]FDG-PET images, as well as of significant hypometabolism in patients compared to healthy controls. Neurogranin- and α-synuclein-VOIs included left precuneus and/or posterior cingulate cortex (PC and/or PCC) and partially overlapped hypometabolism at those sites. ß-synuclein- and neurofilament light chain (NfL)-VOIs regarded either left or right lateral temporal areas, respectively, with partial overlap with hypometabolism only for the ß-synuclein-VOI, whereas the NfL-VOI did not include hypometabolic regions. We speculate that CSF neurogranin and α-synuclein express an already established hippocampal damage leading to PC and/or PCC deafferentation and hypometabolism. ß-synuclein may represent the progression of synaptopathy in the temporal lobe, while NfL the axonal injury in right temporal regions where neuronal loss is not yet evident.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores/líquido cefalorraquidiano , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Disfunção Cognitiva/metabolismo , Humanos , Neurogranina , Tomografia por Emissão de Pósitrons/métodos , Dados Preliminares , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo
8.
J Neural Transm (Vienna) ; 129(2): 207-230, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34460014

RESUMO

The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.


Assuntos
Proteínas do Tecido Nervoso , Sinapses , Biomarcadores/líquido cefalorraquidiano , Proteína C-Reativa , Proteínas do Tecido Nervoso/metabolismo , Plasticidade Neuronal/fisiologia , Sinapses/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA