Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Plants (Basel) ; 12(20)2023 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-37896025

RESUMO

Photosynthesis is a crucial process supporting life on Earth. However, unfavorable environmental conditions including toxic metals may limit the photosynthetic efficiency of plants, and the responses to those challenges may vary among genotypes. In this study, we evaluated photosynthetic parameters of the chili pepper varieties Jalapeño, Poblano, and Serrano exposed to Cd (0, 5, 10 µM), Tl (0, 6, 12 nM), and V (0, 0.75, 1.5 µM). Metals were added to the nutrient solution for 60 days. Stomatal conductance (Gs), transpiration rate (Tr), net photosynthetic rate (Pn), intercellular CO2 concentration (Ci), instantaneous carboxylation efficiency (Pn/Ci), instantaneous water use efficiency (instWUE), and intrinsic water use efficiency (iWUE) were recorded. Mean Pn increased with 12 nM Tl in Serrano and with 0.75 µM V in Poblano. Tl and V increased mean Tr in all three cultivars, while Cd reduced it in Jalapeño and Serrano. Gs was reduced in Jalapeño and Poblano with 5 µM Cd, and 0.75 µM V increased it in Serrano. Ci increased in Poblano with 6 nM Tl, while 12 nM Tl reduced it in Serrano. Mean instWUE increased in Poblano with 10 µM Cd and 0.75 µM V, and in Serrano with 12 nM Tl, while 6 nM Tl reduced it in Poblano and Serrano. Mean iWUE increased in Jalapeño and Poblano with 5 µM Cd, in Serrano with 12 nM Tl, and in Jalapeño with 1.5 µM V; it was reduced with 6 nM Tl in Poblano and Serrano. Pn/Ci increased in Serrano with 5 µM Cd, in Jalapeño with 6 nM Tl, and in Poblano with 0.75 µM V. Interestingly, Tl stimulated six and inhibited five of the seven photosynthetic variables measured, while Cd enhanced three and decreased two variables, and V stimulated five variables, with none inhibited, all as compared to the respective controls. We conclude that Cd, Tl, and V may inhibit or stimulate photosynthetic parameters depending on the genotype and the doses applied.

2.
Dose Response ; 19(4): 15593258211044576, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34840539

RESUMO

BACKGROUND: Silver nanoparticles (AgNPs) display unique biological activities and may serve as novel biostimulators. Nonetheless, their biostimulant effects on germination, early growth, and major nutrient concentrations (N, P, and K) in tomato (Solanum lycopersicum) have been little explored. METHODS: Tomato seeds of the Vengador and Rio Grande cultivars were germinated on filter paper inside plastic containers in the presence of 0, 5, 10, and 20 mg/L AgNPs. Germination parameters were recorded daily, while early growth traits of seedlings were determined 20 days after applying the treatments (dat). To determine nutrient concentrations in leaves, a hydroponic experiment was established, adding AgNPs to the nutrient solution. Thirty-day-old plants were established in the hydroponic system and kept there for 7 days, and subsequently, leaves were harvested and nutrient concentrations were determined. RESULTS: The AgNPs applied did not affect germination parameters, whereas their application stimulated length and number of roots in a hormetic manner. In 37-day-old plants, low AgNP applications increased the concentrations of N, P, and K in leaves. CONCLUSION: As novel biostimulants, AgNPs promoted root development, especially when applied at 5 mg/L. Furthermore, they increased N, P, and K concentration in leaves, which is advantageous for seedling performance during the early developmental stages.

3.
Sci Rep ; 9(1): 10372, 2019 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-31316123

RESUMO

The impact of nanotechnology in the field of agricultural sciences creates the need to study in greater detail the effect of products offering nanoparticles for application in plant species of agricultural interest. The objective of this study was to determine the response of stevia (Stevia rebaudiana B.) in vitro to different concentrations of AgNPs (silver nanoparticles), as well as to characterize and identify their absorption, translocation and accumulation mechanisms. Nodal segments of stevia grown in MS medium supplemented with AgNPs (0,12.5, 25, 50,100 and 200 mg L-1) were used. After 30 days of in vitro shoot proliferation, the number of shoots per explant, shoot length, chlorophyll content, dry matter content and the metallic silver (Ag) content of the plants were quantified. In addition, characterization, transport and accumulation of silver nanoparticles were performed by microscopic analysis. AgNPs were shown to be present in epidermal stem cells, within vascular bundles and in intermembrane spaces. In leaves, they were observed in ribs and stomata. The current and future use of AgNPs in agricultural sciences opens up the possibility of studying their effects on different plant species.


Assuntos
Nanopartículas Metálicas , Prata/farmacologia , Stevia/metabolismo , Transporte Biológico , Clorofila/metabolismo , Relação Dose-Resposta a Droga , Ferro/metabolismo , Magnésio/metabolismo , Microscopia Eletrônica , Microscopia de Fluorescência , Nitrogênio/metabolismo , Tamanho da Partícula , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Brotos de Planta/ultraestrutura , Prata/administração & dosagem , Prata/metabolismo , Stevia/efeitos dos fármacos , Stevia/ultraestrutura , Técnicas de Cultura de Tecidos
4.
Front Plant Sci ; 8: 308, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28344584

RESUMO

Lanthanum (La) is considered a beneficial element, capable of inducing hormesis. Hormesis is a dose-response relationship phenomenon characterized by low-dose stimulation and high-dose inhibition. Herein we tested the effect of 0 and 10 µM La on growth and biomolecule concentrations of seedlings of four sweet bell pepper (Capsicum annuum L.) varieties, namely Sven, Sympathy, Yolo Wonder, and Zidenka. Seedling evaluations were performed 15 and 30 days after treatment applications (dat) under hydroponic greenhouse conditions. Seedling height was significantly increased by La, growing 20% taller in Yolo Wonder plants, in comparison to the control. Similarly, La significantly enhanced shoot diameter, with increases of 9 and 9.8% in measurements performed 15 and 30 dat, respectively, as compared to the control. Likewise, La-treated seedlings had a higher number of flower buds than the control. An increase in the number of leaves because of La application was observed in Yolo Wonder seedlings, both 15 and 30 dat, while leaf area was augmented in this variety only 30 dat. Nevertheless, La did not affect dry biomass accumulation. La effects on biomolecule concentration were differential over time. In all varieties, La stimulated the biosynthesis of chlorophyll a, b and total 15 dat, though 30 dat only the varieties Sympathy and Yolo Wonder showed enhanced concentrations of these molecules because of La. Total soluble sugars increased in La-treated seedlings 30 dat. Interestingly, while most varieties exposed to La showed a reduction in amino acid concentration 15 dat, the opposite trend was observed 30 dat. Importantly, in all varieties evaluated, La stimulated soluble protein concentration 30 dat. It is important to note that while chlorophyll concentrations increased in all varieties exposed to La, both 15 and 30 dat, those of soluble sugars and proteins consistently increased only 30 dat, but not 15 dat. Our results confirm that La may improve seedling quality by enhancing some growth parameters and biomolecule concentrations, depending on the genotype, and time of exposure.

5.
Front Plant Sci ; 8: 129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28223993

RESUMO

Diacylglycerol kinases (DGKs) are pivotal signaling enzymes that phosphorylate diacylglycerol (DAG) to yield phosphatidic acid (PA). The biosynthesis of PA from phospholipase D (PLD) and the coupled phospholipase C (PLC)/DGK route is a crucial signaling process in eukaryotic cells. Next to PLD, the PLC/DGK pathway is the second most important generator of PA in response to biotic and abiotic stresses. In eukaryotic cells, DGK, DAG, and PA are implicated in vital processes such as growth, development, and responses to environmental cues. A plethora of DGK isoforms have been identified so far, making this a rather large family of enzymes in plants. Herein we performed a comprehensive phylogenetic analysis of DGK isoforms in model and crop plants in order to gain insight into the evolution of higher plant DGKs. Furthermore, we explored the expression profiling data available in public data bases concerning the regulation of plant DGK genes in response to beneficial elements and other metal and metalloid ions, including silver (Ag), aluminum (Al), arsenic (As), cadmium (Cd), chromium (Cr), mercury (Hg), and sodium (Na). In all plant genomes explored, we were able to find DGK representatives, though in different numbers. The phylogenetic analysis revealed that these enzymes fall into three major clusters, whose distribution depends on the composition of structural domains. The catalytic domain conserves the consensus sequence GXGXXG/A where ATP binds. The expression profiling data demonstrated that DGK genes are rapidly but transiently regulated in response to certain concentrations and time exposures of beneficial elements and other ions in different plant tissues analyzed, suggesting that DGKs may mediate signals triggered by these elements. Though this evidence is conclusive, further signaling cascades that such elements may stimulate during hormesis, involving the phosphoinositide signaling pathway and DGK genes and enzymes, remain to be elucidated.

6.
J Biol Chem ; 280(41): 34888-99, 2005 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-16081412

RESUMO

Diacylglycerol kinase (DGK) regulates the level of the second messenger diacylglycerol and produces phosphatidic acid (PA), another signaling molecule. The Arabidopsis thaliana genome encodes seven putative diacylglycerol kinase isozymes (named AtDGK1 to -7), structurally falling into three major clusters. So far, enzymatic activity has not been reported for any plant Cluster II DGK. Here, we demonstrate that a representative of this cluster, AtDGK7, is biochemically active when expressed as a recombinant protein in Escherichia coli. AtDGK7, encoded by gene locus At4g30340, contains 374 amino acids with an apparent molecular mass of 41.2 kDa. AtDGK7 harbors an N-terminal catalytic domain, but in contrast to various characterized DGKs (including AtDGK2), it lacks a cysteine-rich domain at its N terminus, and, importantly, its C-terminal DGK accessory domain is incomplete. Recombinant AtDGK7 expressed in E. coli exhibits Michaelis-Menten type kinetics with 1,2-dioleoyl-sn-glycerol as substrate. AtDGK7 activity was affected by pH, detergents, and the DGK inhibitor R59022. We demonstrate that both AtDGK2 and AtDGK7 phosphorylate diacylglycerol molecular species that are typically found in plants, indicating that both enzymes convert physiologically relevant substrates. AtDGK7 is expressed throughout the Arabidopsis plant, but expression is strongest in flowers and young seedlings. Expression of AtDGK2 is transiently induced by wounding. R59022 at approximately 80 mum inhibits root elongation and lateral root formation and reduces plant growth, indicating that DGKs play an important role in plant development.


Assuntos
Arabidopsis/enzimologia , Arabidopsis/genética , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/fisiologia , Trifosfato de Adenosina/química , Sequência de Aminoácidos , Arabidopsis/química , Bactérias/metabolismo , Western Blotting , Cromatografia Líquida de Alta Pressão , Clonagem Molecular , Cisteína/química , DNA Complementar/metabolismo , Detergentes/farmacologia , Diglicerídeos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glicerol/análogos & derivados , Glicerol/química , Concentração de Íons de Hidrogênio , Cinética , Modelos Genéticos , Dados de Sequência Molecular , Família Multigênica , Ácidos Oleicos/química , Ácidos Fosfatídicos/química , Proteínas de Plantas/química , Raízes de Plantas/metabolismo , Estrutura Terciária de Proteína , Pirimidinonas/farmacologia , Proteínas Recombinantes/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade por Substrato , Tiazóis/farmacologia , Fatores de Tempo
7.
J Biol Chem ; 279(9): 8230-41, 2004 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-14665624

RESUMO

Diacylglycerol kinase (DGK) phosphorylates diacylglycerol (DAG) to generate phosphatidic acid (PA). Both DAG and PA are implicated in signal transduction pathways. DGKs have been widely studied in animals, but their analysis in plants is fragmentary. Here, we report the cloning and biochemical characterization of AtDGK2, encoding DGK from Arabidopsis thaliana. AtDGK2 has a predicted molecular mass of 79.4 kDa and, like AtDGK1 previously reported, harbors two copies of a phorbol ester/DAG-binding domain in its N-terminal region. AtDGK2 belongs to a family of seven DGK genes in A. thaliana. AtDGK3 to AtDGK7 encode approximately 55-kDa DGKs that lack a typical phorbol ester/DAG-binding domain. Phylogenetically, plant DGKs fall into three clusters. Members of all three clusters are widely expressed in vascular plants. Recombinant AtDGK2 was expressed in Escherichia coli and biochemically characterized. The enzyme phosphorylated 1,2-dioleoyl-sn-glycerol to yield PA, exhibiting Michaelis-Menten type kinetics. Estimated K(m) and V(max) values were 125 microm for DAG and 0.25 pmol of PA min(-1) microg(-1), respectively. The enzyme was maximally active at pH 7.2. Its activity was Mg(2+)-dependent and affected by the presence of detergents, salts, and the DGK inhibitor R59022, but not by Ca(2+). AtDGK2 exhibited substrate preference for unsaturated DAG analogues (i.e. 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2-dioleoyl-sn-glycerol). The AtDGK2 gene is expressed in various tissues of the Arabidopsis plant, including leaves, roots, and flowers, as shown by Northern blot analysis and promoter-reporter gene fusions. We found that AtDGK2 is induced by exposure to low temperature (4 degrees C), pointing to a role in cold signal transduction.


Assuntos
Arabidopsis/enzimologia , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Diglicerídeos/metabolismo , Expressão Gênica , Sequência de Aminoácidos , Arabidopsis/genética , Temperatura Baixa , DNA Complementar/isolamento & purificação , DNA de Plantas/isolamento & purificação , Diacilglicerol Quinase/química , Flores/enzimologia , Concentração de Íons de Hidrogênio , Isoenzimas/química , Cinética , Magnésio/farmacologia , Dados de Sequência Molecular , Fosforilação , Filogenia , Folhas de Planta/enzimologia , Raízes de Plantas/embriologia , Transdução de Sinais , Especificidade por Substrato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA