Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Data Brief ; 44: 108499, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35983130

RESUMO

Type II DNA topoisomerases relax topological stress by transiently gating DNA passage in a controlled cut-and-reseal mechanism that affects both DNA strands. Therefore, they are essential to overcome topological problems associated with DNA metabolism. Their aberrant activity results in the generation of DNA double-strand breaks, which can seriously compromise cell survival and genome integrity. Here, we profile the transcriptome of human-telomerase-immortalized retinal pigment epithelial 1 (RPE-1) cells when treated with merbarone, a drug that catalytically inhibits type II DNA topoisomerases. We performed RNA-Seq after 4 and 8 h of merbarone treatment and compared transcriptional profiles versus untreated samples. We report raw sequencing data together with lists of gene counts and differentially expressed genes.

2.
Data Brief ; 40: 107699, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34977291

RESUMO

This paper presents a data set with information on meteorological data and electricity consumption in the department of Alto Paraná, Paraguay. The meteorological data were registered every three hours at the Aeropuerto Guarani, Department of Alto Paraná, which belongs to the Dirección Nacional de Aeronáutica Civil of Paraguay. The final data consists of a total of 22.445 records of temperature, relative humidity, wind speed and atmospheric pressure. On the other hand, the electrical energy consumption data set contains a total of 1.848.947 records, all of them coming from the one hundred and fifteen feeders located throughout the Alto Paraná region of Paraguay. Electrical energy consumption data was provided by Administración Nacional de Electricidad (ANDE). The analysis of this data can yield insights regarding the energy consumption in the area.

3.
PLoS Comput Biol ; 17(1): e1007814, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33465072

RESUMO

DNA topoisomerase II-ß (TOP2B) is fundamental to remove topological problems linked to DNA metabolism and 3D chromatin architecture, but its cut-and-reseal catalytic mechanism can accidentally cause DNA double-strand breaks (DSBs) that can seriously compromise genome integrity. Understanding the factors that determine the genome-wide distribution of TOP2B is therefore not only essential for a complete knowledge of genome dynamics and organization, but also for the implications of TOP2-induced DSBs in the origin of oncogenic translocations and other types of chromosomal rearrangements. Here, we conduct a machine-learning approach for the prediction of TOP2B binding using publicly available sequencing data. We achieve highly accurate predictions, with accessible chromatin and architectural factors being the most informative features. Strikingly, TOP2B is sufficiently explained by only three features: DNase I hypersensitivity, CTCF and cohesin binding, for which genome-wide data are widely available. Based on this, we develop a predictive model for TOP2B genome-wide binding that can be used across cell lines and species, and generate virtual probability tracks that accurately mirror experimental ChIP-seq data. Our results deepen our knowledge on how the accessibility and 3D organization of chromatin determine TOP2B function, and constitute a proof of principle regarding the in silico prediction of sequence-independent chromatin-binding factors.


Assuntos
Cromatina , DNA Topoisomerases Tipo II , Genoma/genética , Modelos Genéticos , Animais , Células Cultivadas , Cromatina/química , Cromatina/genética , Cromatina/metabolismo , DNA Topoisomerases Tipo II/química , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Genômica , Humanos , Células MCF-7 , Aprendizado de Máquina , Camundongos , Ligação Proteica , Timócitos
5.
Genes (Basel) ; 11(9)2020 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-32847102

RESUMO

The role of three-dimensional genome organization as a critical regulator of gene expression has become increasingly clear over the last decade. Most of our understanding of this association comes from the study of long range chromatin interaction maps provided by Chromatin Conformation Capture-based techniques, which have greatly improved in recent years. Since these procedures are experimentally laborious and expensive, in silico prediction has emerged as an alternative strategy to generate virtual maps in cell types and conditions for which experimental data of chromatin interactions is not available. Several methods have been based on predictive models trained on one-dimensional (1D) sequencing features, yielding promising results. However, different approaches vary both in the way they model chromatin interactions and in the machine learning-based strategy they rely on, making it challenging to carry out performance comparison of existing methods. In this study, we use publicly available 1D sequencing signals to model cohesin-mediated chromatin interactions in two human cell lines and evaluate the prediction performance of six popular machine learning algorithms: decision trees, random forests, gradient boosting, support vector machines, multi-layer perceptron and deep learning. Our approach accurately predicts long-range interactions and reveals that gradient boosting significantly outperforms the other five methods, yielding accuracies of about 95%. We show that chromatin features in close genomic proximity to the anchors cover most of the predictive information, as has been previously reported. Moreover, we demonstrate that gradient boosting models trained with different subsets of chromatin features, unlike the other methods tested, are able to produce accurate predictions. In this regard, and besides architectural proteins, transcription factors are shown to be highly informative. Our study provides a framework for the systematic prediction of long-range chromatin interactions, identifies gradient boosting as the best suited algorithm for this task and highlights cell-type specific binding of transcription factors at the anchors as important determinants of chromatin wiring mediated by cohesin.


Assuntos
Algoritmos , Cromatina/metabolismo , Simulação por Computador , Regulação Leucêmica da Expressão Gênica , Genoma Humano , Aprendizado de Máquina Supervisionado , Cromatina/genética , Humanos , Células K562 , Máquina de Vetores de Suporte
6.
Genes (Basel) ; 11(7)2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32708319

RESUMO

Gene networks have arisen as a promising tool in the comprehensive modeling and analysis of complex diseases. Particularly in viral infections, the understanding of the host-pathogen mechanisms, and the immune response to these, is considered a major goal for the rational design of appropriate therapies. For this reason, the use of gene networks may well encourage therapy-associated research in the context of the coronavirus pandemic, orchestrating experimental scrutiny and reducing costs. In this work, gene co-expression networks were reconstructed from RNA-Seq expression data with the aim of analyzing the time-resolved effects of gene Ly6E in the immune response against the coronavirus responsible for murine hepatitis (MHV). Through the integration of differential expression analyses and reconstructed networks exploration, significant differences in the immune response to virus were observed in Ly6E Δ H S C compared to wild type animals. Results show that Ly6E ablation at hematopoietic stem cells (HSCs) leads to a progressive impaired immune response in both liver and spleen. Specifically, depletion of the normal leukocyte mediated immunity and chemokine signaling is observed in the liver of Ly6E Δ H S C mice. On the other hand, the immune response in the spleen, which seemed to be mediated by an intense chromatin activity in the normal situation, is replaced by ECM remodeling in Ly6E Δ H S C mice. These findings, which require further experimental characterization, could be extrapolated to other coronaviruses and motivate the efforts towards novel antiviral approaches.


Assuntos
Antígenos de Superfície/imunologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/imunologia , Proteínas Ligadas por GPI/imunologia , Redes Reguladoras de Genes , Interações Hospedeiro-Patógeno/imunologia , Animais , Antígenos de Superfície/genética , Biologia Computacional/métodos , Proteínas Ligadas por GPI/genética , Regulação da Expressão Gênica , Interações Hospedeiro-Patógeno/genética , Camundongos Knockout , Vírus da Hepatite Murina
7.
Genes (Basel) ; 10(12)2019 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-31766738

RESUMO

Gene Networks (GN), have emerged as an useful tool in recent years for the analysis of different diseases in the field of biomedicine. In particular, GNs have been widely applied for the study and analysis of different types of cancer. In this context, Lung carcinoma is among the most common cancer types and its short life expectancy is partly due to late diagnosis. For this reason, lung cancer biomarkers that can be easily measured are highly demanded in biomedical research. In this work, we present an application of gene co-expression networks in the modelling of lung cancer gene regulatory networks, which ultimately served to the discovery of new biomarkers. For this, a robust GN inference was performed from microarray data concomitantly using three different co-expression measures. Results identified a major cluster of genes involved in SRP-dependent co-translational protein target to membrane, as well as a set of 28 genes that were exclusively found in networks generated from cancer samples. Amongst potential biomarkers, genes N C K A P 1 L and D M D are highlighted due to their implications in a considerable portion of lung and bronchus primary carcinomas. These findings demonstrate the potential of GN reconstruction in the rational prediction of biomarkers.


Assuntos
Biomarcadores Tumorais/genética , Redes Reguladoras de Genes , Neoplasias Pulmonares/genética , Algoritmos , Biologia Computacional , Distrofina/genética , Expressão Gênica , Humanos , Pulmão/metabolismo , Proteínas de Membrana/genética , Mutação , Fumar/genética
8.
Artif Intell Med ; 95: 133-145, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30420244

RESUMO

In the recent years, the vast amount of genetic information generated by new-generation approaches, have led to the need of new data handling methods. The integrative analysis of diverse-nature gene information could provide a much-sought overview to study complex biological systems and processes. In this sense, Gene Regulatory Networks (GRN) arise as an increasingly-promising tool for the modelling and analysis of biological processes. This review is an attempt to summarize the state of the art in the field of GRNs. Essential points in the field are addressed, thereof: (a) the type of data used for network generation, (b) machine learning methods and tools used for network generation, (c) model optimization and (d) computational approaches used for network validation. This survey is intended to provide an overview of the subject for readers to improve their knowledge in the field of GRN for future research.


Assuntos
Redes Reguladoras de Genes , Biologia Computacional/métodos , Humanos
9.
Comput Math Methods Med ; 2018: 9674108, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013615

RESUMO

In the last few years, gene networks have become one of most important tools to model biological processes. Among other utilities, these networks visually show biological relationships between genes. However, due to the large amount of the currently generated genetic data, their size has grown to the point of being unmanageable. To solve this problem, it is possible to use computational approaches, such as heuristics-based methods, to analyze and optimize gene network's structure by pruning irrelevant relationships. In this paper we present a new method, called GeSOp, to optimize large gene network structures. The method is able to perform a considerably prune of the irrelevant relationships comprising the input network. To do so, the method is based on a greedy heuristic to obtain the most relevant subnetwork. The performance of our method was tested by means of two experiments on gene networks obtained from different organisms. The first experiment shows how GeSOp is able not only to carry out a significant reduction in the size of the network, but also to maintain the biological information ratio. In the second experiment, the ability to improve the biological indicators of the network is checked. Hence, the results presented show that GeSOp is a reliable method to optimize and improve the structure of large gene networks.


Assuntos
Algoritmos , Biologia Computacional , Redes Reguladoras de Genes
10.
Comput Biol Chem ; 76: 169-178, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30029028

RESUMO

BACKGROUND AND OBJECTIVE: Gene enrichment tools enable the analysis of the relationships between genes with biological annotations stored in biological databases. The results obtained by these tools are usually difficult to analyse. Therefore, researchers require new tools with friendly user interfaces available on all types of devices and new methods to make the analysis of the results easier. METHODS: In this work, we present the BIGO Web tool. BIGO is a friendly Web tool to perform enrichment analyses of a collection of gene sets. On the basis of the obtained enrichment analysis results, BIGO combines the biological terms to organize them and graphically represents the relationships between gene sets to make the interpretations of the results easier. RESULTS: BIGO offers useful services that provide the opportunity to focus on a concrete subset of results by discarding too general biological terms or to obtain useful knowledge by means of the visual analysis of the functional connections between the sets of genes being analysed. CONCLUSIONS: BIGO is a web tool with a novel and modern design that provides the possibility to improve the analysis tasks applied to gene enrichment results.


Assuntos
Biologia Computacional/métodos , Mineração de Dados/métodos , Genes Fúngicos , Software , Bases de Dados Genéticas , Ontologia Genética , Internet , Saccharomyces cerevisiae/genética
11.
Biosystems ; 166: 61-65, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29408296

RESUMO

MOTIVATION: Gene networks are currently considered a powerful tool to model biological processes in the Bioinformatics field. A number of approaches to infer gene networks and various software tools to handle them in a visual simplified way have been developed recently. However, there is still a need to assess the inferred networks in order to prove their relevance. RESULTS: In this paper, we present the new GNC-app for Cytoscape. GNC-app implements the GNC methodology for assessing the biological coherence of gene association networks and integrates it into Cytoscape. Implemented de novo, GNC-app significantly improves the performance of the original algorithm in order to be able to analyse large gene networks more efficiently. It has also been integrated in Cytoscape to increase the tool accessibility for non-technical users and facilitate the visual analysis of the results. This integration allows the user to analyse not only the global biological coherence of the network, but also the biological coherence at the gene-gene relationship level. It also allows the user to leverage Cytoscape capabilities as well as its rich ecosystem of apps to perform further analyses and visualizations of the network using such data. AVAILABILITY: The GNC-app is freely available at the official Cytoscape app store: http://apps.cytoscape.org/apps/gnc.


Assuntos
Biologia Computacional/tendências , Redes Reguladoras de Genes/fisiologia , Aplicativos Móveis/tendências , Software/tendências , Animais , Biologia Computacional/métodos , Humanos
12.
J Biomed Inform ; 68: 71-82, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28274758

RESUMO

Since the popularization of biological network inference methods, it has become crucial to create methods to validate the resulting models. Here we present GFD-Net, the first methodology that applies the concept of semantic similarity to gene network analysis. GFD-Net combines the concept of semantic similarity with the use of gene network topology to analyze the functional dissimilarity of gene networks based on Gene Ontology (GO). The main innovation of GFD-Net lies in the way that semantic similarity is used to analyze gene networks taking into account the network topology. GFD-Net selects a functionality for each gene (specified by a GO term), weights each edge according to the dissimilarity between the nodes at its ends and calculates a quantitative measure of the network functional dissimilarity, i.e. a quantitative value of the degree of dissimilarity between the connected genes. The robustness of GFD-Net as a gene network validation tool was demonstrated by performing a ROC analysis on several network repositories. Furthermore, a well-known network was analyzed showing that GFD-Net can also be used to infer knowledge. The relevance of GFD-Net becomes more evident in Section "GFD-Net applied to the study of human diseases" where an example of how GFD-Net can be applied to the study of human diseases is presented. GFD-Net is available as an open-source Cytoscape app which offers a user-friendly interface to configure and execute the algorithm as well as the ability to visualize and interact with the results(http://apps.cytoscape.org/apps/gfdnet).


Assuntos
Algoritmos , Ontologia Genética , Redes Reguladoras de Genes , Semântica , Humanos , Curva ROC
13.
Comput Biol Chem ; 56: 142-51, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25935118

RESUMO

Gene networks (GNs) have become one of the most important approaches for modeling biological processes. They are very useful to understand the different complex biological processes that may occur in living organisms. Currently, one of the biggest challenge in any study related with GN is to assure the quality of these GNs. In this sense, recent works use artificial data sets or a direct comparison with prior biological knowledge. However, these approaches are not entirely accurate as they only take into account direct gene-gene interactions for validation, leaving aside the weak (indirect) relationships. We propose a new measure, named gene network coherence (GNC), to rate the coherence of an input network according to different biological databases. In this sense, the measure considers not only the direct gene-gene relationships but also the indirect ones to perform a complete and fairer evaluation of the input network. Hence, our approach is able to use the whole information stored in the networks. A GNC JAVA-based implementation is available at: http://fgomezvela.github.io/GNC/. The results achieved in this work show that GNC outperforms the classical approaches for assessing GNs by means of three different experiments using different biological databases and input networks. According to the results, we can conclude that the proposed measure, which considers the inherent information stored in the direct and indirect gene-gene relationships, offers a new robust solution to the problem of GNs biological validation.


Assuntos
Redes Reguladoras de Genes , Modelos Genéticos , Algoritmos , Humanos , Saccharomyces cerevisiae/genética
14.
ScientificWorldJournal ; 2014: 540679, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25295303

RESUMO

In recent years, gene networks have become one of the most useful tools for modeling biological processes. Many inference gene network algorithms have been developed as techniques for extracting knowledge from gene expression data. Ensuring the reliability of the inferred gene relationships is a crucial task in any study in order to prove that the algorithms used are precise. Usually, this validation process can be carried out using prior biological knowledge. The metabolic pathways stored in KEGG are one of the most widely used knowledgeable sources for analyzing relationships between genes. This paper introduces a new methodology, GeneNetVal, to assess the biological validity of gene networks based on the relevance of the gene-gene interactions stored in KEGG metabolic pathways. Hence, a complete KEGG pathway conversion into a gene association network and a new matching distance based on gene-gene interaction relevance are proposed. The performance of GeneNetVal was established with three different experiments. Firstly, our proposal is tested in a comparative ROC analysis. Secondly, a randomness study is presented to show the behavior of GeneNetVal when the noise is increased in the input network. Finally, the ability of GeneNetVal to detect biological functionality of the network is shown.


Assuntos
Epistasia Genética/genética , Redes Reguladoras de Genes/genética , Animais , Humanos , Redes e Vias Metabólicas/genética , Distribuição Aleatória , Saccharomyces cerevisiae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA