RESUMO
Peripheral T-cell lymphoma, not otherwise specified (PTCL-NOS) is a heterogeneous group of malignancies with poor outcome. Here, we identify a subgroup, PTCL-NOSSMARCB1-, which is characterized by the lack of the SMARCB1 protein and occurs more frequently in young patients. Human and murine PTCL-NOSSMARCB1- show similar DNA methylation profiles, with hypermethylation of T-cell-related genes and hypomethylation of genes involved in myeloid development. Single-cell analyses of human and murine tumors revealed a rich and complex network of interactions between tumor cells and an immunosuppressive and exhausted tumor microenvironment (TME). In a drug screen, we identified histone deacetylase inhibitors (HDACi) as a class of drugs effective against PTCL-NOSSmarcb1-. In vivo treatment of mouse tumors with SAHA, a pan-HDACi, triggered remodeling of the TME, promoting replenishment of lymphoid compartments and reversal of the exhaustion phenotype. These results provide a rationale for further exploration of HDACi combination therapies targeting PTCL-NOSSMARCB1- within the TME.
Assuntos
Metilação de DNA , Regulação Neoplásica da Expressão Gênica , Inibidores de Histona Desacetilases , Linfoma de Células T Periférico , Proteína SMARCB1 , Microambiente Tumoral , Animais , Proteína SMARCB1/genética , Proteína SMARCB1/metabolismo , Humanos , Linfoma de Células T Periférico/genética , Linfoma de Células T Periférico/tratamento farmacológico , Linfoma de Células T Periférico/metabolismo , Linfoma de Células T Periférico/patologia , Camundongos , Inibidores de Histona Desacetilases/farmacologia , Microambiente Tumoral/genética , Microambiente Tumoral/efeitos dos fármacos , Feminino , Linhagem Celular Tumoral , Masculino , Vorinostat/farmacologia , Análise de Célula ÚnicaRESUMO
Almost all medulloblastomas (MB) of the Wingless/Int-1 (WNT) type are characterized by hotspot mutations in CTNNB1, and mouse models have convincingly demonstrated the tumor-initiating role of these mutations. Additional alterations in SMARCA4 are detected in â¼20% of WNT MB, but their functional role is mostly unknown. We, therefore, amended previously described brain lipid binding protein (Blbp)-cre::Ctnnb1(ex3)fl/wt mice by the introduction of floxed Smarca4 alleles. Unexpectedly, mutated and thereby stabilized ß-catenin on its own induced severe developmental phenotypes in male and female Blbp-cre::Ctnnb1(ex3)fl/wt mice in our hands, including a thinned cerebral cortex, hydrocephalus, missing cerebellar layering, and cell accumulations in the brainstem and cerebellum. An additional loss of SMARCA4 even resulted in prenatal death for most mice. Respective Blbp-cre::Ctnnb1(ex3)fl/wt::Smarca4fl/rec mutants (male and female) developed large proliferative lesions in the cerebellum evolving from E13.5 to E16.5. Histological and molecular analysis of these lesions by DNA methylation profiling and single-cell RNA sequencing suggested an origin in early undifferentiated SOX2-positive cerebellar progenitors. Furthermore, upregulated WNT signaling, altered actin/cytoskeleton organization, and reduced neuronal differentiation were evident in mutant cells. In vitro, cells harboring alterations in both Ctnnb1 and Smarca4 were negatively selected and did not show tumorigenic potential after transplantation in adult female recipient mice. However, in cerebellar explant cultures, mutant cells displayed significantly increased proliferation, suggesting an important role of the embryonic microenvironment in the development of lesions. Altogether, these results represent an important first step toward the unraveling of tumorigenic mechanisms induced by aberrant WNT signaling and SMARCA4 deficiency.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Feminino , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Cerebelo/metabolismo , Mutação/genética , Transdução de Sinais , Microambiente TumoralRESUMO
BACKGROUND: Medulloblastoma (MB) is the most common malignant brain tumor in children and requires intensive multimodal therapy. Long-term survival is still dissatisfying and, most importantly, survivors frequently suffer from severe treatment-associated morbidities. The sonic hedgehog pathway (SHH) in SHH MB provides a promising target for specific therapeutic agents. The small molecule Vismodegib allosterically inhibits SMO, the main upstream activator of SHH. Vismodegib has proven effective in the treatment of MB in mice and in clinical studies. However, due to irreversible premature epiphyseal growth plate fusions after systemic application to infant mice and children, its implementation to pediatric patients has been limited. Intraventricular Vismodegib application might provide a promising novel treatment strategy for pediatric medulloblastoma patients. METHODS: Infant medulloblastoma-bearing Math1-cre::Ptch1Fl/Fl mice were treated with intraventricular Vismodegib in order to evaluate efficacy on tumor growth and systemic side effects. RESULTS: We show that intraventricular Vismodegib treatment of Math1-cre::Ptch1Fl/Fl mice leads to complete or partial tumor remission only 2 days after completed treatment. Intraventricular treatment also significantly improved symptom-free survival in a dose-dependent manner. At the same time, intraventricular application prevented systemic side effects in the form of anatomical or histological bone deformities. CONCLUSIONS: We conclude that intraventricular application of a SHH pathway inhibitor combines the advantages of a specific treatment agent with precise drug delivery and might evolve as a promising new way of targeted treatment for SHH MB patients.
Assuntos
Neoplasias Cerebelares , Meduloblastoma , Piridinas , Humanos , Camundongos , Animais , Criança , Meduloblastoma/tratamento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Proteínas Hedgehog/metabolismo , Anilidas/farmacologia , Anilidas/uso terapêutico , Modelos Animais de Doenças , Neoplasias Cerebelares/patologiaRESUMO
Pediatric high-grade gliomas of the subclass MYCN (HGG-MYCN) are highly aggressive tumors frequently carrying MYCN amplifications, TP53 mutations, or both alterations. Due to their rarity, such tumors have only recently been identified as a distinct entity, and biological as well as clinical characteristics have not been addressed specifically. To gain insights into tumorigenesis and molecular profiles of these tumors, and to ultimately suggest alternative treatment options, we generated a genetically engineered mouse model by breeding hGFAP-cre::Trp53Fl/Fl::lsl-MYCN mice. All mice developed aggressive forebrain tumors early in their lifetime that mimic human HGG-MYCN regarding histology, DNA methylation, and gene expression. Single-cell RNA sequencing revealed a high intratumoral heterogeneity with neuronal and oligodendroglial lineage signatures. High-throughput drug screening using both mouse and human tumor cells finally indicated high efficacy of Doxorubicin, Irinotecan, and Etoposide as possible therapy options that children with HGG-MYCN might benefit from.
Assuntos
Glioma , Neuroblastoma , Humanos , Criança , Camundongos , Animais , Proteína Proto-Oncogênica N-Myc/genética , Proteína Proto-Oncogênica N-Myc/metabolismo , Neuroblastoma/metabolismo , Modelos Animais de Doenças , Glioma/genética , Mutação , Amplificação de GenesRESUMO
Group 3 medulloblastoma is one of the most aggressive types of childhood brain tumors. Roughly 30% of cases carry genetic alterations in MYC, SMARCA4, or both genes combined. While overexpression of MYC has previously been shown to drive medulloblastoma formation in mice, the functional significance of SMARCA4 mutations and their suitability as a therapeutic target remain largely unclear. To address this issue, we combined overexpression of MYC with a loss of SMARCA4 in granule cell precursors. Both alterations did not increase proliferation of granule cell precursors in vitro. However, combined MYC overexpression and SMARCA4 loss successfully induced tumor formation in vivo after orthotopic transplantation in recipient mice. Resulting tumors displayed anaplastic histology and exclusively consisted of SMARCA4-negative cells although a mixture of recombined and non-recombined cells was injected. These observations provide first evidence for a tumor-promoting role of a SMARCA4 deficiency in the development of medulloblastoma. In comparing the transcriptome of tumors to the cells of origin and an established Sonic Hedgehog medulloblastoma model, we gathered first hints on deregulated gene expression that could be specifically involved in SMARCA4/MYC driven tumorigenesis. Finally, an integration of RNA sequencing and DNA methylation data of murine tumors with human samples revealed a high resemblance to human Group 3 medulloblastoma on the molecular level. Altogether, the development of SMARCA4-deficient medulloblastomas in mice paves the way to deciphering the role of frequently occurring SMARCA4 alterations in Group 3 medulloblastoma with the perspective to explore targeted therapeutic options.
Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Neoplasias Encefálicas/genética , Neoplasias Cerebelares/metabolismo , DNA Helicases/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fatores de Transcrição/genética , TranscriptomaRESUMO
The tumor suppressor and chromatin modifier cAMP response element-binding protein binding protein (CREBBP) and v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog (MYCN), a member of the MYC oncogene family, are critically involved in brain development. Both genes are frequently mutated in the same tumor entities, including high-grade glioma and medulloblastoma. Therefore, we hypothesized that alterations in both genes cooperate to induce brain tumor formation. For further investigation, hGFAP-cre::CrebbpFl/Fl::lsl-MYCN mice were generated, which combine Crebbp deletion with overexpression of MYCN in neural stem cells (NSCs). Within eight months, these animals developed aggressive forebrain tumors. The first tumors were detectable in the olfactory bulbs of seven-day-old mice. This location raises the possibility that presumptive founder cells are derived from the ventricular-subventricular zone (V-SVZ). To examine the cellular biology of these tumors, single-cell RNA sequencing was performed, which revealed high intratumoral heterogeneity. Data comparison with reference CNS cell types indicated the highest similarity of tumor cells with transit-amplifying NSCs or activated NSCs of the V-SVZ. Consequently, we analyzed V-SVZ NSCs of our mouse model aiming to confirm that the tumors originate from this stem cell niche. Mutant V-SVZ NSCs showed significantly increased cell viability and proliferation as well as reduced glial and neural differentiation in vitro compared to control cells. In summary, we demonstrate the oncogenic potential of a combined loss of function of CREBBP and overexpression of MYCN in this cell population. hGFAP-cre::CrebbpFl/Fl::lsl-MYCN mice thus provide a valuable tool to study tumor-driving mechanisms in a key neural stem/ progenitor cell niche.
RESUMO
The BAF (BRG1/BRM-associated factor) chromatin remodelling complex is essential for the regulation of DNA accessibility and gene expression during neuronal differentiation. Mutations of its core subunit SMARCB1 result in a broad spectrum of pathologies, including aggressive rhabdoid tumours or neurodevelopmental disorders. Other mouse models have addressed the influence of a homo- or heterozygous loss of Smarcb1, yet the impact of specific non-truncating mutations remains poorly understood. Here, we have established a new mouse model for the carboxy-terminal Smarcb1 c.1148del point mutation, which leads to the synthesis of elongated SMARCB1 proteins. We have investigated its impact on brain development in mice using magnetic resonance imaging, histology, and single-cell RNA sequencing. During adolescence, Smarcb11148del/1148del mice demonstrated rather slow weight gain and frequently developed hydrocephalus including enlarged lateral ventricles. In embryonic and neonatal stages, mutant brains did not differ anatomically and histologically from wild-type controls. Single-cell RNA sequencing of brains from newborn mutant mice revealed that a complete brain including all cell types of a physiologic mouse brain is formed despite the SMARCB1 mutation. However, neuronal signalling appeared disturbed in newborn mice, since genes of the AP-1 transcription factor family and neurite outgrowth-related transcripts were downregulated. These findings support the important role of SMARCB1 in neurodevelopment and extend the knowledge of different Smarcb1 mutations and their associated phenotypes.
Assuntos
Hidrocefalia , Fator de Transcrição AP-1 , Animais , Camundongos , Hidrocefalia/genética , Mutação/genética , Mutação Puntual/genética , Transdução de Sinais , Fator de Transcrição AP-1/genéticaRESUMO
Rhabdoid tumors (RT) are rare and highly aggressive pediatric neoplasms. Their epigenetically-driven intertumoral heterogeneity is well described; however, the cellular origin of RT remains an enigma. Here, we establish and characterize different genetically engineered mouse models driven under the control of distinct promoters and being active in early progenitor cell types with diverse embryonic onsets. From all models only Sox2-positive progenitor cells give rise to murine RT. Using single-cell analyses, we identify distinct cells of origin for the SHH and MYC subgroups of RT, rooting in early stages of embryogenesis. Intra- and extracranial MYC tumors harbor common genetic programs and potentially originate from fetal primordial germ cells (PGCs). Using PGC specific Smarcb1 knockout mouse models we validate that MYC RT originate from these progenitor cells. We uncover an epigenetic imbalance in MYC tumors compared to PGCs being sustained by epigenetically-driven subpopulations. Importantly, treatments with the DNA demethylating agent decitabine successfully impair tumor growth in vitro and in vivo. In summary, our work sheds light on the origin of RT and supports the clinical relevance of DNA methyltransferase inhibitors against this disease.
Assuntos
Tumor Rabdoide , Animais , Células Germinativas/patologia , Humanos , Camundongos , Tumor Rabdoide/genética , Tumor Rabdoide/patologia , Proteína SMARCB1/genética , Análise de Célula Única , TranscriptomaRESUMO
During development, gene expression is tightly controlled to facilitate the generation of the diverse cell types that form the central nervous system. Brahma-related gene 1 (Brg1, also known as Smarca4) is the catalytic subunit of the SWItch/sucrose nonfermentable (SWI/SNF) chromatin remodeling complex that regulates transcription. We investigated the role of Brg1 between embryonic day 6.5 (E6.5) and E14.5 in Sox2-positive neural stem cells (NSCs). Being without major consequences at E6.5 and E14.5, loss of Brg1 between E7.5 and E12.5 resulted in the formation of rosette-like structures in the subventricular zone, as well as morphological alterations and enlargement of neural retina (NR). Additionally, Brg1-deficient cells showed decreased survival in vitro and in vivo. Furthermore, we uncovered distinct changes in gene expression upon Brg1 loss, pointing towards impaired neuron functions, especially those involving synaptic communication and altered composition of the extracellular matrix. Comparison with mice deficient for integrase interactor 1 (Ini1, also known as Smarcb1) revealed that the enlarged NR was Brg1 specific and was not caused by a general dysfunction of the SWI/SNF complex. These results suggest a crucial role for Brg1 in NSCs during brain and eye development.
Assuntos
Encéfalo/embriologia , DNA Helicases/genética , Olho/embriologia , Regulação da Expressão Gênica no Desenvolvimento/genética , Proteínas Nucleares/genética , Proteína SMARCB1/genética , Fatores de Transcrição/genética , Animais , Apoptose/genética , DNA Helicases/metabolismo , Matriz Extracelular/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células-Tronco Neurais/citologia , Proteínas Nucleares/metabolismo , Fatores de Transcrição/metabolismoRESUMO
Medulloblastoma (MB) is the most common malignant brain tumor in childhood. According to the World Health Organization (WHO) classification of central nervous system (CNS) tumors, this embryonal tumor is divided into a wingless (WNT)-activated, Sonic hedgehog (SHH)-activated, and non-WNT/non-SHH entity. The latter is poorly defined but frequently carries mutations in Brahma-related gene 1 (BRG1) or amplifications of MYCN. Here, we investigated whether a combination of a Brg1 knockout and an overexpression of MYCN in cerebellar granule neuron precursors or multipotent neural stem cells is sufficient to drive brain tumor formation in mice. To this end, we generated Math1-creERT2::Brg1fl/fl::lslMYCN and hGFAP-cre::Brg1fl/fl::lslMYCN mice, respectively. We did not observe brain tumor formation in any of these models. hGFAP-cre::Brg1fl/fl::lslMYCN mice revealed severe CNS abnormalities with short survival, similar to the situation with a sole loss of Brg1, as we previously described. Investigation of Math1-creERT2::Brg1fl/fl::lslMYCN mice with a tamoxifen induction at postnatal day 3 revealed a regular survival but significant increase in cerebellar granule neuron precursor proliferation, followed by a delayed inward migration of these cells. This is in stark contrast to the hypoplastic cerebellum that we previously observed after embryonic deletion of Brg1 in Math1 positive cerebellar granule neurons. Our results indicate a time-specific function of Brg1 in cerebellar granule neuron precursors. Yet, the exact temporal and spatial origin of non-WNT/non-SHH MB remains unclear.
Assuntos
Neoplasias Encefálicas/genética , Cerebelo/citologia , DNA Helicases/genética , Proteína Proto-Oncogênica N-Myc/genética , Células-Tronco Neurais/metabolismo , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Movimento Celular/genética , Proliferação de Células , Grânulos Citoplasmáticos/metabolismo , Feminino , Imuno-Histoquímica , Masculino , Camundongos , Camundongos KnockoutRESUMO
Replicative senescence hampers application of mesenchymal stromal cells (MSCs) because it limits culture expansion, impairs differentiation potential, and hinders reliable standardization of cell products. MSCs can be rejuvenated by reprogramming into induced pluripotent stem cells (iPSCs), which is associated with complete erasure of age- and senescence-associated DNA methylation (DNAm) patterns. However, this process is also associated with erasure of cell-type and tissue-specific epigenetic characteristics that are not recapitulated upon re-differentiation towards MSCs. In this study, we therefore followed the hypothesis that overexpression of pluripotency factors under culture conditions that do not allow full reprogramming might reset senescence-associated changes without entering a pluripotent state. MSCs were transfected with episomal plasmids and either successfully reprogrammed into iPSCs or cultured in different media with continuous passaging every week. Overexpression of pluripotency factors without reprogramming did neither prolong culture expansion nor ameliorate molecular and epigenetic hallmarks of senescence. Notably, transfection resulted in immortalization of one cell preparation with gain of large parts of the long arm of chromosome 1. Taken together, premature termination of reprogramming does not result in rejuvenation of MSCs and harbours the risk of transformation. This approach is therefore not suitable to rejuvenate cells for cellular therapy.