Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Nano Mater ; 6(22): 20612-20622, 2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38037604

RESUMO

Group IVB metal nitrides have attracted great interest as alternative plasmonic materials. Among them, titanium nitride (TiN) stands out due to the ease of deposition and relative abundance of Ti compared to those of Zr and Hf metals. Even though they do not have Au or Ag-like plasmonic characteristics, they offer many advantages, from high mechanical stability to refractory behavior and complementary metal oxide semiconductor-compatible fabrication to tunable electrical/optical properties. In this study, we utilized reactive RF magnetron sputtering to deposit plasmonic TiN thin films. The flow rate and ratio of Ar/N2 and oxygen scavenging methods were optimized to improve the plasmonic performance of TiN thin films. The stoichiometry and structure of the TiN thin films were thoroughly investigated to assess the viability of the optimized operation procedures. To assess the plasmonic performance of TiN thin films, periodic nanohole arrays were perforated on TiN thin films by using electron beam lithography and reactive ion etching methods. The resulting TiN periodic nanohole array with varying periods was investigated by using a custom microspectroscopy setup for both reflection and transmission characteristics in various media to underline the efficacy of TiN for refractometric sensing.

2.
ACS Appl Mater Interfaces ; 15(48): 55201-55231, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37994836

RESUMO

The nanomaterial and related toolkit have promising applications for improving human health and well-being. Nanobased drug delivery systems use nanoscale materials as carriers to deliver therapeutic agents in a targeted and controlled manner, and they have shown potential to address issues associated with conventional drug delivery systems. They offer benefits for treating various illnesses by encapsulating or conjugating biological agents, chemotherapeutic drugs, and immunotherapeutic agents. The potential applications of this technology are vast; however, significant challenges exist to overcome such as safety issues, toxicity, efficacy, and insufficient capacity. This article discusses the latest developments in drug delivery systems, including drug release mechanisms, material toolkits, related design molecules, and parameters. The concluding section examines the limitations and provides insights into future possibilities.


Assuntos
Nanopartículas , Nanoestruturas , Humanos , Sistemas de Liberação de Medicamentos , Portadores de Fármacos
3.
Emergent Mater ; 5(1): 105-132, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35284783

RESUMO

Agricultural pollutants are harmful components threatening human health, wildlife, the environment, and the ecosystem. To avoid their exposure, developing prevention and detection systems with high sensitivity and selectivity is required. Most conventional methods, including molecular and chromatographic techniques, cannot be adopted for outdoor on-site detection even though they can provide sensitive and selective detection. Thus, detection platforms that can provide on-site detection via miniaturized and high throughput systems should be developed. As an alternative method, surface-enhanced Raman scattering (SERS) provides unique information about the substances in the presence of plasmonic nanostructures, and it can be portable with the use of portable detection systems and spectrometers. In this study, on-site detection of agricultural pollutants through SERS is reviewed. Three different types of agricultural pollutants were pointed out. On-site detection of biological pollutants, including bacteria and viruses, is reviewed as the first type of pollutant. As a second type, the detection of pesticides, antibiotics, and additives are focused on as chemical pollutants. The third group includes the detection of microplastics and also nanoparticles from the environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA