Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(2): eadd6439, 2023 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-36630504

RESUMO

We report a huge organic diversity in the Tissint Mars meteorite and the sampling of several mineralogical lithologies, which revealed that the organic molecules were nonuniformly distributed in functionality and abundance. The range of organics in Tissint meteorite were abundant C3-7 aliphatic branched carboxylic acids and aldehydes, olefins, and polyaromatics with and without heteroatoms in a homologous oxidation structural continuum. Organomagnesium compounds were extremely abundant in olivine macrocrystals and in the melt veins, reflecting specific organo-synsthesis processes in close interaction with the magnesium silicates and temperature stresses, as previously observed. The diverse chemistry and abundance in complex molecules reveal heterogeneity in organic speciation within the minerals grown in the martian mantle and crust that may have evolved over geological time.

2.
Proc Natl Acad Sci U S A ; 114(11): 2819-2824, 2017 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-28242686

RESUMO

The rich diversity and complexity of organic matter found in meteorites is rapidly expanding our knowledge and understanding of extreme environments from which the early solar system emerged and evolved. Here, we report the discovery of a hitherto unknown chemical class, dihydroxymagnesium carboxylates [(OH)2MgO2CR]-, in meteoritic soluble organic matter. High collision energies, which are required for fragmentation, suggest substantial thermal stability of these Mg-metalorganics (CHOMg compounds). This was corroborated by their higher abundance in thermally processed meteorites. CHOMg compounds were found to be present in a set of 61 meteorites of diverse petrological classes. The appearance of this CHOMg chemical class extends the previously investigated, diverse set of CHNOS molecules. A connection between the evolution of organic compounds and minerals is made, as Mg released from minerals gets trapped into organic compounds. These CHOMg metalorganic compounds and their relation to thermal processing in meteorites might shed new light on our understanding of carbon speciation at a molecular level in meteorite parent bodies.

3.
Inorg Chem ; 51(9): 5022-5, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22502950

RESUMO

A novel 3D porous metal-organic framework with 1D polarized channels was synthesized, and its adsorption properties for gas separation and chemical sensing were studied. The framework shows a preferential adsorption of CO(2) over N(2) with a selectivity of 22:1. It also exhibits a very good sensitivity to water with respect to most of the organic solvents in view of chemical sensing applications.

4.
Chem Commun (Camb) ; 48(5): 759-61, 2012 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-22134331

RESUMO

A nanoscale aluminium-based metal organic framework (NMOF) with high thermal stability has been synthesized, which shows high H(2) and CO(2) uptake capacities and an excellent selectivity for CO(2) over N(2) and O(2).

5.
Proc Natl Acad Sci U S A ; 107(7): 2763-8, 2010 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-20160129

RESUMO

Numerous descriptions of organic molecules present in the Murchison meteorite have improved our understanding of the early interstellar chemistry that operated at or just before the birth of our solar system. However, all molecular analyses were so far targeted toward selected classes of compounds with a particular emphasis on biologically active components in the context of prebiotic chemistry. Here we demonstrate that a nontargeted ultrahigh-resolution molecular analysis of the solvent-accessible organic fraction of Murchison extracted under mild conditions allows one to extend its indigenous chemical diversity to tens of thousands of different molecular compositions and likely millions of diverse structures. This molecular complexity, which provides hints on heteroatoms chronological assembly, suggests that the extraterrestrial chemodiversity is high compared to terrestrial relevant biological- and biogeochemical-driven chemical space.


Assuntos
Meio Ambiente Extraterreno/química , Meteoroides , Compostos Orgânicos/análise , Fracionamento Químico/métodos , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Fenômenos de Química Orgânica , Enxofre/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA