Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Direct ; 5(11): e358, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34765864

RESUMO

Trehalose is a non-reducing disaccharide widely distributed in nature. The trehalose biosynthetic intermediate, trehalose 6-phosphate (Tre6P) is an essential regulatory and signaling molecule involved in both regulation of carbon metabolism and photosynthesis. To investigate the effect of altered trehalose synthesis on sucrose accumulation in sugarcane (Saccharum spp. hybrid), we independently overexpressed the Escherichia coli otsA (trehalose-6-phosphate synthase; TPS) and otsB (trehalose-6-phosphate phosphatase; TPP) genes and additionally partially silenced native TPS expression. In mature cane, sucrose levels in the otsA transgenic plants were lowered, whereas sucrose levels in the otsB transgenic plants were increased. Partial silencing of TPS expression in sugarcane transformed with a TPS-targeted microRNA recombinant construct was confirmed in leaf and mature internode tissue of transgenic plants. Most of the silencing transgenic lines accumulated trehalose at lower levels than the wild-type (WT) plants. The immature stalk tissue of these transgenic lines had lower levels of glucose and fructose, whereas the mature internode tissue had lower sucrose and glucose levels, when compared with the WT. Furthermore, various minor metabolites and sugars were detected in the sugarcane plants, which mostly decreased as the stalk tissue of the cane matured. The results demonstrate that manipulation of Tre6P/trehalose metabolism has the potential to modify the profile of soluble sugars accumulated in sugarcane stems.

2.
PLoS Biol ; 9(10): e1001170, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22022230

RESUMO

Adaptor protein (AP) complexes sort cargo into vesicles for transport from one membrane compartment of the cell to another. Four distinct AP complexes have been identified, which are present in most eukaryotes. We report the existence of a fifth AP complex, AP-5. Tagged AP-5 localises to a late endosomal compartment in HeLa cells. AP-5 does not associate with clathrin and is insensitive to brefeldin A. Knocking down AP-5 subunits interferes with the trafficking of the cation-independent mannose 6-phosphate receptor and causes the cell to form swollen endosomal structures with emanating tubules. AP-5 subunits can be found in all five eukaryotic supergroups, but they have been co-ordinately lost in many organisms. Concatenated phylogenetic analysis provides robust resolution, for the first time, into the evolutionary order of emergence of the adaptor subunit families, showing AP-3 as the basal complex, followed by AP-5, AP-4, and AP-1 and AP-2. Thus, AP-5 is an evolutionarily ancient complex, which is involved in endosomal sorting, and which has links with hereditary spastic paraplegia.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Reguladoras de Apoptose/genética , Subunidades do Complexo de Proteínas Adaptadoras/genética , Proteínas Adaptadoras de Transporte Vesicular/fisiologia , Proteínas Reguladoras de Apoptose/fisiologia , Clatrina/metabolismo , Endocitose/fisiologia , Endossomos/metabolismo , Células HeLa , Humanos , Filogenia , Estrutura Quaternária de Proteína , Transporte Proteico/genética , Homologia de Sequência , Paraplegia Espástica Hereditária/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA