Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 136
Filtrar
2.
OTO Open ; 8(3): e160, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38974179

RESUMO

Objective: Tragal pumping (TP) is a practice of pushing on the tragus to raise pressure within the external auditory canal and is a commonly recommended adjunctive maneuver believed to facilitate the introduction of ototopical medications into the middle ear cavity via a tympanostomy tube. To investigate the efficacy of TP in the penetration of eardrops into the middle ear cavity via tympanostomy tube, we established the novel tympanostomy tube-rat model. We investigated the histology of the middle ear to determine the efficacy in moving fluid into the middle ear. Study Design: Prospective controlled animal study. Setting: Animal laboratory in a university hospital. Methods: Ten rats were recruited, and a tympanostomy tube insertion and green dye eardrops into outer ears were performed on bilateral ears. TP was performed only on 1 ear and was not applied on the other ear in each rat. Green dye in a middle ear cavity in hematoxylin and eosin-stained temporal bone sections was evaluated by blinded experts in microscopic anatomy (staining grade) and by using Image J software (staining level). The results of these 2 methods were statistically validated. Results: The staining grade (P < .001) and the staining level (P < .001) were significantly higher in the ears which we applied TP than in the control ears. The results of 2 methods were significantly and positively correlated (r = .898, P < .001). Conclusion: Our results showed that the TP accelerate the penetration of eardrops into the middle ear cavity in the tympanostomy tube-rat model.

3.
Biofactors ; 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38994725

RESUMO

Although the epidermal growth factor receptor 2 (ErbB2) and Notch1 signaling pathways have both significant roles in regulating cardiac biology, their interplay in the heart remains poorly investigated. Here, we present evidence of a crosstalk between ErbB2 and Notch1 in cardiac cells, with effects on autophagy and proliferation. Overexpression of ErbB2 in H9c2 cardiomyoblasts induced Notch1 activation in a post-transcriptional, p38-dependent manner, while ErbB2 inhibition with the specific inhibitor, lapatinib, reduced Notch1 activation. Moreover, incubation of H9c2 cells with lapatinib resulted in stalled autophagic flux and decreased proliferation, consistent with the established cardiotoxicity of this and other ErbB2-targeting drugs. Confirming the findings in H9c2 cells, exposure of primary neonatal mouse cardiomyocytes to exogenous neuregulin-1, which engages ErbB2, stimulated proliferation, and this effect was abrogated by concomitant inhibition of the enzyme responsible for Notch1 activation. Furthermore, the hearts of transgenic mice specifically overexpressing ErbB2 in cardiomyocytes had increased levels of active Notch1 and of Notch-related genes. These data expand the knowledge of ErbB2 and Notch1 functions in the heart and may allow better understanding the mechanisms of the cardiotoxicity of ErbB2-targeting cancer treatments.

4.
Mol Cancer Ther ; : OF1-OF11, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853421

RESUMO

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited because of dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for patients with LSCC. Moreover, other options for chemotherapy-ineligible patients are limited. As such, there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. In this study, we investigated inhibiting TRAF2- and NCK-interacting protein kinase (TNIK), which is amplified in 40% of patients with LSCC, as a strategy to sensitize LSCC tumors to chemotherapy and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in patients with LSCC with high TNIK expression.

5.
Front Pharmacol ; 15: 1385598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38751786

RESUMO

Prostate cancer (PC) is an aggressive cancer that can progress rapidly and eventually become castrate-resistant prostate cancer (CRPC). Stage IV metastatic castrate-resistant prostate cancer (mCRPC) is an incurable late-stage cancer type with a low 5-year overall survival rate. Targeted therapeutics such as antibody-drug conjugates (ADCs) based on high-affinity monoclonal antibodies and potent drugs conjugated via smart linkers are being developed for PC management. Conjugating further with in vitro or in vivo imaging agents, ADCs can be used as antibody-theranostic conjugates (ATCs) for diagnostic and image-guided drug delivery. In this study, we have developed a novel ATC for PSMA (+) PC therapy utilizing (a) anti-PSMA 5D3 mAb, (b) Aurora A kinase inhibitor, MLN8237, and (c) for the first time using tetrazine (Tz) and trans-cyclooctene (TCO) click chemistry-based conjugation linker (CC linker) in ADC development. The resulting 5D3(CC-MLN8237)3.2 was labeled with suitable fluorophores for in vitro and in vivo imaging. The products were characterized by SDS-PAGE, MALDI-TOF, and DLS and evaluated in vitro by optical imaging, flow cytometry, and WST-8 assay for cytotoxicity in PSMA (+/-) cells. Therapeutic efficacy was determined in human PC xenograft mouse models following a designed treatment schedule. After the treatment study animals were euthanized, and toxicological studies, complete blood count (CBC), blood clinical chemistry analysis, and H&E staining of vital organs were conducted to determine side effects and systemic toxicities. The IC50 values of 5D3(CC-MLN8237)3.2-AF488 in PSMA (+) PC3-PIP and PMSA (-) PC3-Flu cells are 8.17 nM and 161.9 nM, respectively. Pure MLN8237 shows 736.9 nM and 873.4 nM IC50 values for PC3-PIP and PC3-Flu cells, respectively. In vivo study in human xenograft mouse models confirmed high therapeutic efficacy of 5D3(CC-MLN8237)3.2-CF750 with significant control of PSMA (+) tumor growth with minimal systemic toxicity in the treated group compared to PSMA (-) treated and untreated groups. Approximately 70% of PSMA (+) PC3-PIP tumors did not exceed the threshold of the tumor size in the surrogate Kaplan-Meyer analysis. The novel ATC successfully controlled the growth of PSMA (+) tumors in preclinical settings with minimal systemic toxicities. The therapeutic efficacy and favorable safety profile of novel 5D3(CC-MLN8237)3.2 ATC demonstrates their potential use as a theranostic against aggressive PC.

6.
Mol Cancer Ther ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38670554

RESUMO

Most patients with lung squamous cell carcinoma (LSCC) undergo chemotherapy, radiotherapy, and adjuvant immunotherapy for locally advanced disease. The efficacy of these treatments is still limited due to dose-limiting toxicity or locoregional recurrence. New combination approaches and targets such as actionable oncogenic drivers are needed to advance treatment options for LSCC patients. Moreover, other options for chemotherapy-ineligible patients are also limited. As such there is a critical need for the development of selective and potent chemoradiosensitizers for locally advanced LSCC. Here, we investigated inhibiting TRAF2 and NCK-interacting protein kinase (TNIK), which is amplified in 40% of LSCC patients, as a strategy to sensitize LSCC tumors to chemo- and radiotherapy. Employing a range of human LSCC cell lines and the TNIK inhibitor NCB-0846, we investigated the potential of TNIK as a chemo- and radiosensitizing target with in vitro and in vivo preclinical models. The combination of NCB-0846 with cisplatin or etoposide was at best additive. Interestingly, pre-treating LSCC cells with NCB-0846 prior to ionizing radiation (IR) potentiated the cytotoxicity of IR in a TNIK-specific fashion. Characterization of the radiosensitization mechanism suggested that TNIK inhibition may impair the DNA damage response and promote mitotic catastrophe in irradiated cells. In a subcutaneous xenograft in vivo model, pretreatment with NCB-0846 significantly enhanced the efficacy of IR and caused elevated necrosis in TNIKhigh LK2 tumors but not TNIKlow KNS62 tumors. Overall, these results indicate that TNIK inhibition may be a promising strategy to increase the efficacy of radiotherapy in LSCC patients with high TNIK expression.

7.
Eur J Nucl Med Mol Imaging ; 51(9): 2649-2662, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38641714

RESUMO

Alpha-particle radionuclide-antibody conjugates are being clinically evaluated against solid tumors even when they moderately express the targeted markers. At this limit of lower tumor-absorbed doses, to maintain efficacy, the few(er) intratumorally delivered alpha-particles need to traverse/hit as many different cancer cells as possible. We complement antibody-radioconjugate therapies with a separate nanocarrier delivering a fraction of the same total injected radioactivity to tumor regions geographically different than those affected by targeting antibodies; these carrier-cocktails collectively distribute the alpha-particle emitters better. METHODS: The efficacy of actinium-225 delivered by our carrier-cocktails was assessed in vitro and on mice with orthotopic MDA-MB-436 and/or MDA-MB-231 triple-negative breast cancers and/or an ectopic BxPC3 pancreatic cancer. Cells/tumors were chosen to express low-to-moderate levels of HER1, as model antibody-targeted marker. RESULTS: Independent of cell line, antibody-radioconjugates were most lethal on cell monolayers. On spheroids, with radii greater than alpha-particles' range, carrier-cocktails improved killing efficacy (p < 0.0500). Treatment with carrier-cocktails decreased the MDA-MB-436 and MDA-MB-231 orthotopic tumor volumes by 73.7% and 72.1%, respectively, relative to treatment with antibody-radioconjugates alone, at same total injected radioactivity; these carrier-cocktails completely eliminated formation of spontaneous metastases vs. 50% and 25% elimination in mice treated with antibody-radioconjugates alone. In BxPC3 tumor-bearing mice, carrier-cocktails increased the median survival to 25-26 days (in male-female animals) vs. 20-21 days of mice treated with antibody-radioconjugates alone (vs. 17 days for non-treated animals). Survival with carrier-cocktail radiotherapy was further prolonged by pre-injecting low-dose, standard-of-care, gemcitabine (p = 0.0390). CONCLUSION: Tumor-agnostic carrier-cocktails significantly enhance the therapeutic efficacy of existing alpha-particle radionuclide-antibody treatments.


Assuntos
Actínio , Partículas alfa , Animais , Actínio/química , Actínio/uso terapêutico , Camundongos , Linhagem Celular Tumoral , Humanos , Partículas alfa/uso terapêutico , Feminino , Imunoconjugados/química , Imunoconjugados/uso terapêutico , Biomarcadores Tumorais/metabolismo , Portadores de Fármacos/química
8.
ACS Nano ; 18(15): 10509-10526, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38564478

RESUMO

Systemic exposure to starch-coated iron oxide nanoparticles (IONPs) can stimulate antitumor T cell responses, even when little IONP is retained within the tumor. Here, we demonstrate in mouse models of metastatic breast cancer that IONPs can alter the host immune landscape, leading to systemic immune-mediated disease suppression. We report that a single intravenous injection of IONPs can inhibit primary tumor growth, suppress metastases, and extend survival. Gene expression analysis revealed the activation of Toll-like receptor (TLR) pathways involving signaling via Toll/Interleukin-1 receptor domain-containing adaptor-inducing IFN-ß (TRIF), a TLR pathway adaptor protein. Requisite participation of TRIF in suppressing tumor progression was demonstrated with histopathologic evidence of upregulated IFN-regulatory factor 3 (IRF3), a downstream protein, and confirmed in a TRIF knockout syngeneic mouse model of metastatic breast cancer. Neither starch-coated polystyrene nanoparticles lacking iron, nor iron-containing dextran-coated parenteral iron replacement agent, induced significant antitumor effects, suggesting a dependence on the type of IONP formulation. Analysis of multiple independent clinical databases supports a hypothesis that upregulation of TLR3 and IRF3 correlates with increased overall survival among breast cancer patients. Taken together, these data support a compelling rationale to re-examine IONP formulations as harboring anticancer immune (nano)adjuvant properties to generate a therapeutic benefit without requiring uptake by cancer cells.


Assuntos
Neoplasias da Mama , Neoplasias Pulmonares , Animais , Camundongos , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Receptor 3 Toll-Like/metabolismo , Receptor 4 Toll-Like/metabolismo , Modelos Animais de Doenças , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Adaptadoras de Transporte Vesicular/genética , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Ferro , Amido , Nanopartículas Magnéticas de Óxido de Ferro
9.
Eur J Nucl Med Mol Imaging ; 51(5): 1409-1420, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38108831

RESUMO

PURPOSE: Current treatments for osteosarcoma (OS) have a poor prognosis, particularly for patients with metastasis and recurrence, underscoring an urgent need for new targeted therapies to improve survival. Targeted alpha-particle therapy selectively delivers cytotoxic payloads to tumors with radiolabeled molecules that recognize tumor-associated antigens. We have recently demonstrated the potential of an FDA approved, humanized anti-GD2 antibody, hu3F8, as a targeted delivery vector for radiopharmaceutical imaging of OS. The current study aims to advance this system for alpha-particle therapy of OS. METHODS: The hu3F8 antibody was radiolabeled with actinium-225, and the safety and therapeutic efficacy of the [225Ac]Ac-DOTA-hu3F8 were evaluated in both orthotopic murine xenografts of OS and spontaneously occurring OS in canines. RESULTS: Significant antitumor activity was proven in both cases, leading to improved overall survival. In the murine xenograft's case, tumor growth was delayed by 16-18 days compared to the untreated cohort as demonstrated by bioluminescence imaging. The results were further validated with magnetic resonance imaging at 33 days after treatment, and microcomputed tomography and planar microradiography post-mortem. Histological evaluations revealed radiation-induced renal toxicity, manifested as epithelial cell karyomegaly and suggestive polyploidy in the kidneys, suggesting rapid recovery of renal function after radiation damage. Treatment of the two canine patients delayed the progression of metastatic spread, with an overall survival time of 211 and 437 days and survival beyond documented metastasis of 111 and 84 days, respectively. CONCLUSION: This study highlights the potential of hu3F8-based alpha-particle therapy as a promising treatment strategy for OS.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Camundongos , Animais , Cães , Estudo de Prova de Conceito , Microtomografia por Raio-X , Anticorpos Monoclonais Humanizados , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/radioterapia , Neoplasias Ósseas/diagnóstico por imagem , Neoplasias Ósseas/radioterapia , Linhagem Celular Tumoral
10.
Cancers (Basel) ; 15(24)2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38136330

RESUMO

Cell-based immunotherapy for glioblastoma (GBM) encounters major challenges due to the infiltration-resistant and immunosuppressive tumor microenvironment (TME). γδ T cells, unconventional T cells expressing the characteristic γδ T cell receptor, have demonstrated promise in overcoming these challenges, suggesting great immunotherapeutic potential. This review presents the role of γδ T cells in GBM and proposes several research avenues for future studies. Using the PubMed, ScienceDirect, and JSTOR databases, we performed a review of the literature studying the biology of γδ T cells and their role in GBM treatment. We identified 15 studies focused on γδ T cells in human GBM. Infiltrative γδ T cells can incite antitumor immune responses in certain TMEs, though rapid tumor progression and TME hypoxia may impact the extent of tumor suppression. In the studies, available findings have shown both the potential for robust antitumor activity and the risk of protumor activity. While γδ T cells have potential as a therapeutic agent against GBM, the technical challenges of extracting, isolating, and expanding γδ T cells, and the activation of antitumoral versus protumoral cascades, remain barriers to their application. Overcoming these limitations may transform γδ T cells into a promising immunotherapy in GBM.

11.
Comp Med ; 2023 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-37788893

RESUMO

This corrects the article DOI: 10.30802/AALAS-CM-22-000095
In the original article entitled "Comparison of CardiovascularPathology in Animal Models of SARS-CoV-2 Infection:Recommendations Regarding Standardization of ResearchMethods," published in Vol 73, Issue 1 (February 2023),the grant information appearing in the Acknowledgmentssection should read: We acknowledge training supportfrom the National Institutes of Health (T32 OD011089) forIAJ and SM.

12.
bioRxiv ; 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37546808

RESUMO

Nearly 30% of Pancreatic ductal adenocarcinoma (PDAC)s exhibit a marked overexpression of Monocarboxylate Transporter 1 (MCT1) offering a unique opportunity for therapy. However, biochemical inhibitors of MCT1 have proven unsuccessful in clinical trials. In this study we present an alternative approach using 3-Bromopyruvate (3BP) to target MCT1 overexpressing PDACs. 3BP is a cytotoxic agent that is known to be transported into cells via MCT1, but its clinical usefulness has been hampered by difficulties in delivering the drug systemically. We describe here a novel microencapsulated formulation of 3BP (ME3BP-7), that is effective against a variety of PDAC cells in vitro and remains stable in serum. Furthermore, systemically administered ME3BP-7 significantly reduces pancreatic cancer growth and metastatic spread in multiple orthotopic models of pancreatic cancer with manageable toxicity. ME3BP-7 is, therefore, a prototype of a promising new drug, in which the targeting moiety and the cytotoxic moiety are both contained within the same single small molecule. One Sentence Summary: ME3BP-7 is a novel formulation of 3BP that resists serum degradation and rapidly kills pancreatic cancer cells expressing high levels of MCT1 with tolerable toxicity in mice.

13.
Front Immunol ; 14: 1194931, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37503343

RESUMO

Introduction: Obesity, an independent risk factor for breast cancer growth and metastatic progression, is also closely intertwined with gut dysbiosis; and both obese state and dysbiosis promote each other. Enteric abundance of Bacteroides fragilis is strongly linked with obesity, and we recently discovered the presence of B. fragilis in malignant breast cancer. Given that enterotoxigenic B. fragilis or ETBF, which secretes B. fragilis toxin (BFT), has been identified as a procarcinogenic microbe in breast cancer, it is necessary to examine its impact on distant metastasis and underlying systemic and localized alterations promoting metastatic progression of breast cancer. Methods: We used syngeneic mammary intraductal (MIND) model harboring gut colonization with ETBF to query distant metastasis of breast cancer cells. Alterations in the immune network and cytokines/chemokines in the tumor microenvironment and distant metastatic sites were examined using flow cytometry, immunohistochemistry, and multiplex arrays. Results: ETBF infection initiates a systemic inflammation aiding in the establishment of the premetastatic niche formation in vital organs via increased proinflammatory and protumorigenic cytokines like IL17A, IL17E, IL27p28, IL17A/F, IL6, and IL10 in addition to creating a prometastatic immunosuppressive environment in the liver and lungs rich in myeloid cells, macrophages, and T regulatory cells. It induces remodeling of the tumor microenvironment via immune cell and stroma infiltration, increased vasculogenesis, and an EMT-like response, thereby encouraging early metastatic dissemination ready to colonize the conducive environment in liver and lungs of the breast tumor-bearing mice. Discussion: In this study, we show that enteric ETBF infection concomitantly induces systemic inflammation, reshapes the tumor immune microenvironment, and creates conducive metastatic niches to potentiate early dissemination and seeding of metastases to liver and lung tissues in agreement with the "seed and soil hypothesis." Our results also support the ETBF-induced "parallel model" of metastasis that advocates for an early dissemination of tumor cells that form metastatic lesions independent of the primary tumor load.


Assuntos
Toxinas Bacterianas , Neoplasias Hepáticas , Neoplasias Pulmonares , Camundongos , Animais , Disbiose , Inflamação , Citocinas , Pulmão , Obesidade , Microambiente Tumoral
14.
Int J Radiat Oncol Biol Phys ; 117(4): 1018-1027, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364800

RESUMO

PURPOSE: This work describes the first implementation and in vivo study of ultrahigh-dose-rate radiation (>37 Gy/s; FLASH) effects induced by kilovoltage (kV) x-ray from a rotating-anode x-ray source. METHODS AND MATERIALS: A high-capacity rotating-anode x-ray tube with an 80-kW generator was implemented for preclinical FLASH radiation research. A custom 3-dimensionally printed immobilization and positioning tool was developed for reproducible irradiation of a mouse hind limb. Calibrated Gafchromic (EBT3) film and thermoluminescent dosimeters (LiF:Mg,Ti) were used for in-phantom and in vivo dosimetry. Healthy FVB/N and FVBN/C57BL/6 outbred mice were irradiated on 1 hind leg to doses up to 43 Gy at FLASH (87 Gy/s) and conventional (CONV; <0.05 Gy/s) dose rates. The radiation doses were delivered using a single pulse with the widths up to 500 ms and 15 minutes at FLASH and CONV dose rates. Histologic assessment of radiation-induced skin damage was performed at 8 weeks posttreatment. Tumor growth suppression was assessed using a B16F10 flank tumor model in C57BL6J mice irradiated to 35 Gy at both FLASH and CONV dose rates. RESULTS: FLASH-irradiated mice experienced milder radiation-induced skin injuries than CONV-irradiated mice, visible by 4 weeks posttreatment. At 8 weeks posttreatment, normal tissue injury was significantly reduced in FLASH-irradiated animals compared with CONV-irradiated animals for histologic endpoints including inflammation, ulceration, hyperplasia, and fibrosis. No difference in tumor growth response was observed between FLASH and CONV irradiations at 35 Gy. The normal tissue sparing effects of FLASH irradiations were observed only for high-severity endpoint of ulceration at 43 Gy, which suggests the dependency of biologic endpoints to FLASH radiation dose. CONCLUSIONS: Rotating-anode x-ray sources can achieve FLASH dose rates in a single pulse with dosimetric properties suitable for small-animal experiments. We observed FLASH normal tissue sparing of radiation toxicities in mouse skin irradiated at 35 Gy with no sacrifice to tumor growth suppression. This study highlights an accessible new modality for laboratory study of the FLASH effect.


Assuntos
Neoplasias , Lesões por Radiação , Animais , Camundongos , Raios X , Camundongos Endogâmicos C57BL , Radiografia , Radiometria
15.
Int J Nanomedicine ; 18: 2525-2537, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37197026

RESUMO

Purpose: Hepatocellular carcinoma (HCC) has limited treatment options, and modest survival after systemic chemotherapy or procedures such as transarterial chemoembolization (TACE). There is therefore a need to develop targeted therapies to address HCC. Gene therapies hold immense promise in treating a variety of diseases, including HCC, though delivery remains a critical hurdle. This study investigated a new approach of local delivery of polymeric nanoparticles (NPs) via intra-arterial injection for targeted local gene delivery to HCC tumors in an orthotopic rat liver tumor model. Methods: Poly(beta-amino ester) (PBAE) nanoparticles were formulated and assessed for GFP transfection in N1-S1 rat HCC cells in vitro. Optimized PBAE NPs were next administered to rats via intra-arterial injection with and without orthotopic HCC tumors, and both biodistribution and transfection were assessed. Results: In vitro transfection of PBAE NPs led to >50% transfected cells in adherent and suspension culture at a variety of doses and weight ratios. Administration of NPs via intra-arterial or intravenous injection demonstrated no transfection of healthy liver, while intra-arterial NP injection led to transfection of tumors in an orthotopic rat HCC model. Conclusion: Hepatic artery injection is a promising delivery approach for PBAE NPs and demonstrates increased targeted transfection of HCC tumors compared to intravenous administration, and offers a potential alternative to standard chemotherapies and TACE. This work demonstrates proof of concept for administration of polymeric PBAE nanoparticles via intra-arterial injection for gene delivery in rats.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Ratos , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Injeções Intra-Arteriais , Distribuição Tecidual , Quimioembolização Terapêutica/métodos , Polímeros
16.
J Vis Exp ; (192)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36876944

RESUMO

Uterine cancers can be studied in mice due to the ease of handling and genetic manipulation in these models. However, these studies are often limited to assessing pathology post-mortem in animals euthanized at multiple time points in different cohorts, which increases the number of mice needed for a study. Imaging mice in longitudinal studies can track the progression of disease in individual animals, reducing the number of mice needed. Advances in ultrasound technology have allowed for the detection of micrometer-level changes in tissues. Ultrasound has been used to study follicle maturation in ovaries and xenograft growth but has not been applied to morphological changes in the mouse uterus. This protocol examines the juxtaposition of pathology with in vivo imaging comparisons in an induced endometrial cancer mouse model. The features observed by ultrasound were consistent with the degree of change seen by gross pathology and histology. Ultrasound was found to be highly predictive of the observed pathology, supporting the incorporation of ultrasonography into longitudinal studies of uterine diseases such as cancer in mice.


Assuntos
Neoplasias do Endométrio , Animais , Feminino , Camundongos , Modelos Animais de Doenças , Proteínas de Ligação a DNA , Neoplasias do Endométrio/diagnóstico por imagem , Neoplasias do Endométrio/genética , Xenoenxertos , Fator de Transcrição PAX8 , PTEN Fosfo-Hidrolase , Fatores de Transcrição , Ultrassonografia , Deleção de Genes
17.
Comp Med ; 2023 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944497

RESUMO

The common marmoset (Callithrix jacchus), a New World NHP, has emerged as important animal model in multiple areas of translational biomedical research. The quality of translational research in marmosets depends on early diagnosis, treatment, and prevention of their spontaneous diseases. Here, we characterize an outbreak of infectious cholangiohepatitis that affected 7 adult common marmosets in a single building over a 10-mo period. Marmosets presented for acute onset of lethargy, dull mentation, weight loss, dehydration, hyporexia, and hypothermia. Blood chemistries at presentation revealed markedly elevated hepatic and biliary enzymes, but mild neutrophilia was detected in only 1 of the 7. Affected marmosets were unresponsive to rigorous treatment and died or were euthanized within 48 h of presentation. Gross and histopathologic examinations revealed severe, necrosuppurative cholangiohepatitis and proliferative cholecystitis with bacterial colonies and an absence of gallstones. Perimortem and postmortem cultures revealed single or dual isolates of Escherichia coli and Pseudomonas aeruginosa. Other postmortem findings included bile duct hyperplasia, periportal hepatitis, bile peritonitis, ulcerative gastroenteritis, and typhlitis. Environmental contamination of water supply equipment with Pseudomonas spp. was identified as the source of infection, but pathogenesis remains unclear. This type of severe, infectious cholangiohepatitis with proliferative cholecystitis with Pseudomonas spp. had not been reported previously in marmosets, and we identified and here describe several contributing factors in addition to contaminated drinking water.

18.
Comp Med ; 73(1): 58-71, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36731878

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged as the viral pathogen that led to the global COVID-19 pandemic that began in late 2019. Because SARS-CoV-2 primarily causes a respiratory disease, much research conducted to date has focused on the respiratory system. However, SARS-CoV-2 infection also affects other organ systems, including the cardiovascular system. In this critical analysis of published data, we evaluate the evidence of cardiovascular pathology in human patients and animals. Overall, we find that the presence or absence of cardiovascular pathology is reported infrequently in both human autopsy studies and animal models of SARS-CoV-2 infection. Moreover, in those studies that have reported cardiovascular pathology, we identified issues in their design and execution that reduce confidence in the conclusions regarding SARS-CoV-2 infection as a cause of significant cardiovascular pathology. Throughout this overview, we expand on these limitations and provide recommendations to ensure a high level of scientific rigor and reproducibility.


Assuntos
COVID-19 , Humanos , Animais , SARS-CoV-2 , Pandemias , Reprodutibilidade dos Testes , Modelos Animais de Doenças , Padrões de Referência
19.
Commun Biol ; 5(1): 1251, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36380187

RESUMO

Alterations of serine/threonine phosphorylation of the cardiac proteome are a hallmark of heart failure. However, the contribution of tyrosine phosphorylation (pTyr) to the pathogenesis of cardiac hypertrophy remains unclear. We use global mapping to discover and quantify site-specific pTyr in two cardiac hypertrophic mouse models, i.e., cardiac overexpression of ErbB2 (TgErbB2) and α myosin heavy chain R403Q (R403Q-αMyHC Tg), compared to control hearts. From this, there are significant phosphoproteomic alterations in TgErbB2 mice in right ventricular cardiomyopathy, hypertrophic cardiomyopathy (HCM), and dilated cardiomyopathy (DCM) pathways. On the other hand, R403Q-αMyHC Tg mice indicated that the EGFR1 pathway is central for cardiac hypertrophy, along with angiopoietin, ErbB, growth hormone, and chemokine signaling pathways activation. Surprisingly, most myofilament proteins have downregulation of pTyr rather than upregulation. Kinase-substrate enrichment analysis (KSEA) shows a marked downregulation of MAPK pathway activity downstream of k-Ras in TgErbB2 mice and activation of EGFR, focal adhesion, PDGFR, and actin cytoskeleton pathways. In vivo ErbB2 inhibition by AG-825 decreases cardiomyocyte disarray. Serine/threonine and tyrosine phosphoproteome confirm the above-described pathways and the effectiveness of AG-825 Treatment. Thus, altered pTyr may play a regulatory role in cardiac hypertrophic models.


Assuntos
Cardiomiopatia Hipertrófica , Proteoma , Camundongos , Animais , Proteoma/metabolismo , Fosforilação , Cardiomiopatia Hipertrófica/genética , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/patologia , Cardiomegalia , Serina/metabolismo , Treonina/metabolismo , Tirosina/metabolismo
20.
Sci Adv ; 8(42): eadc9022, 2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36260680

RESUMO

Wilson disease (WD) is a metabolic disorder caused by inactivation of the copper-transporting ATPase 2 (ATP7B) and copper (Cu) overload in tissues. Excess Cu causes oxidative stress and pathologic changes with poorly understood mechanistic connections. In Atp7b-/- mice with established liver disease, Cu overload activates the stress-sensitive transcription factor Nrf2 (nuclear factor erythroid-derived 2-like 2). Nrf2 targets, especially sulfotransferase 1e1 (Sult1e1), are strongly induced and cause elevation of sulfated sterols, whereas oxysterols are decreased. This sterol misbalance results in inhibition of the liver X receptor (LXR) and up-regulation of LXR targets associated with inflammatory responses. Pharmacological inhibition of Sult1e1 partially reverses oxysterol misbalance and LXR inhibition. Contribution of this pathway to advanced hepatic WD was demonstrated by treating mice with an LXR agonist. Treatment decreased inflammation by reducing expression of proinflammatory molecules, diminished fibrosis by down-regulating the noncanonical transforming growth factor-ß signaling pathway, and improved liver morphology and function. Thus, the identified pathway is an important driver of WD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA