RESUMO
Agricultural landscapes are increasingly characterized by intensification and habitat losses. Landscape composition and configuration are known to mediate insect abundance and richness. In the context of global insect decline, and despite 75% of crops being dependent on insects, there is still a gap of knowledge about the link between pollinators and aromatic crops. Fennel (Foeniculum vulgare) is an aromatic plant cultivated in the South of France for its essential oil, which is of great economic interest. Using pan-traps, we investigated the influence of the surrounding habitats at landscape scale (semi-natural habitat proportion and vicinity, landscape configuration) and local scale agricultural practices (insecticides and patch size) on fennel-flower-visitor abundance and richness, and their subsequent impact on fennel essential oil yield. We found that fennel may to be a generalist plant species. We did not find any effect of intense local management practices on insect abundance and richness. Landscape configuration and proximity to semi-natural habitat were the main drivers of flying insect family richness. This richness positively influenced fennel essential oil yield. Maintaining a complex configuration of patches at the landscape scale is important to sustain insect diversity and crop yield.
RESUMO
The effect of biodiversity on ecosystem functioning has been widely acknowledged, and the importance of the functional roles of species, as well as their diversity, in the control of ecosystem processes has been emphasised recently. However, bridging biodiversity and ecosystem science to address issues at a biogeographic scale is still in its infancy. Bridging this gap is the primary goal of the emerging field of functional biogeography. While the rise of Big Data has catalysed functional biogeography studies in recent years, comprehensive evidence remains scarce. Here, we present the rationale and the first results of a country-wide initiative focused on the C3 permanent grasslands. We aimed to collate, integrate and process large databases of vegetation relevés, plant traits and environmental layers to provide a country-wide assessment of ecosystem properties and services which can be used to improve regional models of climate and land use changes. We outline the theoretical background, data availability, and ecoinformatics challenges associated with the approach and its feasibility. We provide a case study of upscaling of leaf dry matter content averaged at ecosystem level and country-wide predictions of forage digestibility. Our framework sets milestones for further hypothesis testing in functional biogeography and earth system modelling.