Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood Adv ; 8(12): 3109-3119, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513135

RESUMO

ABSTRACT: Mycosis fungoides (MF) is the most prevalent primary cutaneous T-cell lymphoma, with an indolent or aggressive course and poor survival. The pathogenesis of MF remains unclear, and prognostic factors in the early stages are not well established. Here, we characterized the most recurrent genomic alterations using whole-exome sequencing of 67 samples from 48 patients from Lille University Hospital (France), including 18 sequential samples drawn across stages of the malignancy. Genomic data were analyzed on the Broad Institute's Terra bioinformatics platform. We found that gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), or mutations in JUNB and TET2 are associated with high-risk disease stages. Furthermore, gain7q, gain10p15.1 (IL2RA and IL15RA), del10p11.22 (ZEB1), and del6q16.3 (TNFAIP3) are coupled with shorter survival. Del6q16.3 (TNFAIP3) was a risk factor for progression in patients at low risk. By analyzing the clonal heterogeneity and the clonal evolution of the cohort, we defined different phylogenetic pathways of the disease with acquisition of JUNB, gain10p15.1 (IL2RA and IL15RA), or del12p13.1 (CDKN1B) at progression. These results establish the genomics and clonality of MF and identify potential patients at risk of progression, independent of their clinical stage.


Assuntos
Progressão da Doença , Micose Fungoide , Humanos , Micose Fungoide/genética , Micose Fungoide/mortalidade , Micose Fungoide/diagnóstico , Micose Fungoide/patologia , Masculino , Feminino , Genômica/métodos , Pessoa de Meia-Idade , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/mortalidade , Neoplasias Cutâneas/patologia , Mutação , Prognóstico , Adulto , Sequenciamento do Exoma , Idoso , Fatores de Risco
2.
iScience ; 27(4): 109417, 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38510131

RESUMO

Multiple myeloma (MM) is an incurable hematological malignancy in which MYC alterations contribute to the malignant phenotype. Nevertheless, MYC lacks therapeutic druggability. Here, we leveraged large-scale loss-of-function screens and conducted a small molecule screen to identify genes and pathways with enhanced essentiality correlated with MYC expression. We reported a specific gene dependency in glutaminase (GLS1), essential for the viability and proliferation of MYC overexpressing cells. Conversely, the analysis of isogenic models, as well as cell lines dataset (CCLE) and patient datasets, revealed GLS1 as a non-oncogenic dependency in MYC-driven cells. We functionally delineated the differential modulation of glutamine to maintain mitochondrial function and cellular biosynthesis in MYC overexpressing cells. Furthermore, we observed that pharmaceutical inhibition of NAMPT selectively affects MYC upregulated cells. We demonstrate the effectiveness of combining GLS1 and NAMPT inhibitors, suggesting that targeting glutaminolysis and NAD synthesis may be a promising strategy to target MYC-driven MM.

3.
Sci Immunol ; 7(78): eade5686, 2022 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-36459543

RESUMO

Cytokines interact with their receptors in the extracellular space to control immune responses. How the physicochemical properties of the extracellular space influence cytokine signaling is incompletely elucidated. Here, we show that the activity of interleukin-2 (IL-2), a cytokine critical to T cell immunity, is profoundly affected by pH, limiting IL-2 signaling within the acidic environment of tumors. Generation of lactic acid by tumors limits STAT5 activation, effector differentiation, and antitumor immunity by CD8+ T cells and renders high-dose IL-2 therapy poorly effective. Directed evolution enabled selection of a pH-selective IL-2 mutein (Switch-2). Switch-2 binds the IL-2 receptor subunit IL-2Rα with higher affinity, triggers STAT5 activation, and drives CD8+ T cell effector function more potently at acidic pH than at neutral pH. Consequently, high-dose Switch-2 therapy induces potent immune activation and tumor rejection with reduced on-target toxicity in normal tissues. Last, we show that sensitivity to pH is a generalizable property of a diverse range of cytokines with broad relevance to immunity and immunotherapy in healthy and diseased tissues.


Assuntos
Interleucina-2 , Neoplasias , Humanos , Fator de Transcrição STAT5 , Linfócitos T CD8-Positivos , Citocinas , Concentração de Íons de Hidrogênio
4.
Curr Res Transl Med ; 70(2): 103331, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34999480

RESUMO

The event of anti-CD19 chimeric antigen receptor (CAR)-T therapy inducing serious neurotoxicity in patients with diffuse large B-cell lymphoma (DLBCL) is recognized; however, the patterns of symptoms and severity vary greatly from patient to patient. We report an exceptional presentation of acute myelopathy in a refractory DLBCL following successful CAR-T treatment along with grade 3 cytokine release syndrome (CRS) and neurotoxicity. The patient was initiated on high-dose methylprednisolone (MPS) resulting in rapid improvement of neurological symptoms. Yet the myelopathy patient (MP) experienced severe lower limb motor deficit, and a subsequent spinal cord MRI revealed myelopathy with a sensory level at segment T2. Multimodal therapy consisting of MPS, intravenous immunoglobulin and anakinra therapy resulted in complete reversal of myelopathy condition and the patient remained cancer free. The assessment of time trends of serum cytokines at baseline and post CAR-T infusion in MP compared to other 4 DLBCL complete responder patients with varying degree of CRS following CAR-T infusion, suggested pre-existing baseline inflammatory conditions in MP with altered levels of cytokines. These findings, if corroborated by similar case studies, have the potential to generate novel insights into the manifestation of myelopathy following CAR-T therapy and the successful clinical management of such complications.


Assuntos
Linfoma Difuso de Grandes Células B , Síndromes Neurotóxicas , Receptores de Antígenos Quiméricos , Doenças da Medula Espinal , Antígenos CD19 , Síndrome da Liberação de Citocina , Citocinas , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfoma Difuso de Grandes Células B/complicações , Linfoma Difuso de Grandes Células B/terapia , Síndromes Neurotóxicas/etiologia , Receptores de Antígenos Quiméricos/uso terapêutico , Doenças da Medula Espinal/induzido quimicamente , Doenças da Medula Espinal/tratamento farmacológico
5.
J Immunol ; 206(11): 2652-2667, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-34031145

RESUMO

The ability of innate immune cells to respond to pathogen-associated molecular patterns across a wide range of intensities is fundamental to limit the spreading of infections. Studies on transcription responses to pathogen-activated TLRs have often used relatively high TLR ligand concentrations, and less is known about their regulation under mild stimulatory conditions. We had shown that the transcription factor NFAT5 facilitates expression of antipathogen genes under TLR stimulation conditions corresponding to low pathogen loads. In this study, we analyze how NFAT5 optimizes TLR-activated responses in mouse macrophages. We show that NFAT5 was required for effective recruitment of central effectors p65/NF-κB and c-Fos to specific proinflammatory target genes, such as Nos2, Il6, and Tnf in primary macrophages responding to low doses of the TLR4 ligand LPS. By contrast, NFAT5 was not required for p65/NF-κB recruitment in response to high LPS doses. Using the transposase-accessible chromatin with high-throughput sequencing assay, we show that NFAT5 facilitated chromatin accessibility mainly at promoter regions of multiple TLR4-responsive genes. Analysis of various histone marks that regulate gene expression in response to pathogens identified H3K27me3 demethylation as an early NFAT5-dependent mechanism that facilitates p65 recruitment to promoters of various TLR4-induced genes. Altogether, these results advance our understanding about specific mechanisms that optimize antipathogen responses to limit infections.


Assuntos
Cromatina/imunologia , Fatores de Transcrição/imunologia , Animais , Células Cultivadas , Desmetilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fatores de Transcrição/deficiência
6.
Elife ; 102021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-33871355

RESUMO

Cytokines elicit pleiotropic and non-redundant activities despite strong overlap in their usage of receptors, JAKs and STATs molecules. We use IL-6 and IL-27 to ask how two cytokines activating the same signaling pathway have different biological roles. We found that IL-27 induces more sustained STAT1 phosphorylation than IL-6, with the two cytokines inducing comparable levels of STAT3 phosphorylation. Mathematical and statistical modeling of IL-6 and IL-27 signaling identified STAT3 binding to GP130, and STAT1 binding to IL-27Rα, as the main dynamical processes contributing to sustained pSTAT1 levels by IL-27. Mutation of Tyr613 on IL-27Rα decreased IL-27-induced STAT1 phosphorylation by 80% but had limited effect on STAT3 phosphorgylation. Strong receptor/STAT coupling by IL-27 initiated a unique gene expression program, which required sustained STAT1 phosphorylation and IRF1 expression and was enriched in classical Interferon Stimulated Genes. Interestingly, the STAT/receptor coupling exhibited by IL-6/IL-27 was altered in patients with systemic lupus erythematosus (SLE). IL-6/IL-27 induced a more potent STAT1 activation in SLE patients than in healthy controls, which correlated with higher STAT1 expression in these patients. Partial inhibition of JAK activation by sub-saturating doses of Tofacitinib specifically lowered the levels of STAT1 activation by IL-6. Our data show that receptor and STATs concentrations critically contribute to shape cytokine responses and generate functional pleiotropy in health and disease.


Assuntos
Receptor gp130 de Citocina/agonistas , Interleucina-27/farmacologia , Interleucina-6/farmacologia , Receptores de Interleucina/agonistas , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Células Th1/efeitos dos fármacos , Motivos de Aminoácidos , Ligação Competitiva , Estudos de Casos e Controles , Células Cultivadas , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Humanos , Fator Regulador 1 de Interferon/metabolismo , Interleucina-27/metabolismo , Interleucina-6/metabolismo , Cinética , Lúpus Eritematoso Sistêmico/imunologia , Lúpus Eritematoso Sistêmico/metabolismo , Modelos Biológicos , Mutação , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Receptores de Interleucina/genética , Receptores de Interleucina/metabolismo , Transdução de Sinais , Células Th1/imunologia , Células Th1/metabolismo
7.
Front Immunol ; 11: 621225, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33584718

RESUMO

Natural killer (NK) cells are endowed with germline-encoded receptors that enable them to detect and kill malignant cells without prior priming. Over the years, overwhelming evidence has identified an essential role for NK cells in tumor immune surveillance. More recently, clinical trials have also highlighted their potential in therapeutic settings. Yet, data show that NK cells can be dysregulated within the tumor microenvironment (TME), rendering them ineffective in eradicating the cancer cells. This has been attributed to immune suppressive factors, including the tumor cells per se, stromal cells, regulatory T cells, and soluble factors such as reactive oxygen species and cytokines. However, the TME also hosts myeloid cells such as dendritic cells, macrophages, neutrophils, and myeloid-derived suppressor cells that influence NK cell function. Although the NK-myeloid cell crosstalk can promote anti-tumor responses, myeloid cells in the TME often dysregulate NK cells via direct cell-to-cell interactions down-regulating key NK cell receptors, depletion of nutrients and growth factors required for NK cell growth, and secretion of metabolites, chemokines and cytokines that ultimately alter NK cell trafficking, survival, and cytotoxicity. Here, we review the complex functions of myeloid-derived cytokines in both supporting and suppressing NK cells in the TME and how NK cell-derived cytokines can influence myeloid subsets. We discuss challenges related to these interactions in unleashing the full potential of endogenous and adoptively infused NK cells. Finally, we present strategies aiming at improving NK cell-based cancer immunotherapies via pathways that are involved in the NK-myeloid cell crosstalk in the TME.


Assuntos
Comunicação Celular/imunologia , Citocinas/imunologia , Imunoterapia , Células Matadoras Naturais , Células Mieloides , Neoplasias , Microambiente Tumoral/imunologia , Animais , Humanos , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/patologia , Células Matadoras Naturais/transplante , Células Mieloides/imunologia , Células Mieloides/patologia , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/terapia
8.
Front Immunol ; 10: 719, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31024551

RESUMO

Natural Killer (NK) cells are potent cytotoxic cells belonging to the family of Innate Lymphoid Cells (ILCs). Their most characterized effector functions are directed to the control of aberrant cells in the body, including both transformed and virus-infected cells. NK cell-mediated recognition of abnormal cells primarily occurs through receptor-ligand interactions, involving an array of inhibitory and activating NK receptors and different types of ligands expressed on target cells. While most of the receptors have become known over many years, their respective ligands were only defined later and their impressive complexity has only recently become evident. NKp44, a member of Natural Cytotoxicity Receptors (NCRs), is an activating receptor playing a crucial role in most functions exerted by activated NK cells and also by other NKp44+ immune cells. The large and heterogeneous panel of NKp44 ligands (NKp44L) now includes surface expressed glycoproteins and proteoglycans, nuclear proteins that can be exposed outside the cell, and molecules that can be either released in the extracellular space or carried in extracellular vesicles. Recent findings have extended our knowledge on the nature of NKp44L to soluble plasma glycoproteins, such as secreted growth factors or extracellular matrix (ECM)-derived glycoproteins. NKp44L are induced upon tumor transformation or viral infection but may also be expressed in normal cells and tissues. In addition, NKp44-NKp44L interactions are involved in the crosstalk between NK cells and different innate and adaptive immune cell types. NKp44 expression in different ILCs located in tissues further extends the potential role of NKp44-NKp44L interactions.


Assuntos
Imunidade Inata/imunologia , Células Matadoras Naturais/imunologia , Linfócitos/imunologia , Receptor 2 Desencadeador da Citotoxicidade Natural/imunologia , Animais , Humanos , Ligantes
9.
Oncoimmunology ; 7(9): e1470730, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30228939

RESUMO

The release of soluble ligands of activating Natural Killer (NK) cell receptors may represent a regulatory mechanism of NK cell function both in physiologic and in pathologic conditions. Here, we identified the extracellular matrix protein Nidogen-1 (NID1) as a ligand of NKp44, an important activating receptor expressed by activated NK cells. When released as soluble molecule, NID1 regulates NK cell function by modulating NKp44-induced IFN-γ production or cytotoxicity. In particular, it also modulates IFN-γ production induced by Platelet-Derived Growth Factor (PDGF)-DD following NKp44 engagement. We also show that NID1 may be present at the cell surface. In this form or when bound to a solid support (bNID1), NID1 fails to induce NK cell cytotoxicity or cytokine release. However, analysis by mass spectrometry revealed that exposure to bNID1 can induce in human NK cells relevant changes in the proteomic profiles suggesting an effect on different biological processes.

10.
Oncotarget ; 8(21): 35088-35102, 2017 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-28456791

RESUMO

Angiogenesis represents a hallmark of tumor progression in Multiple Myeloma (MM), a still incurable malignancy. Here we analyzed the activity of cytokine-stimulated NK cells against tumor-associated endothelial cells isolated from bone marrow aspirates of MM patients with active disease (MMECs). We show that NK cells activated with optimal doses of IL-15 killed MMECs thanks to the concerted action of multiple activating receptors. In particular, according to the high expression of PVR and Nectin-2 on MMECs, DNAM-1 actively participated in target recognition. Interestingly, in MMECs the surface density of PVR was significantly higher than that detected in endothelium from patients with MM in complete remission or with monoclonal gammopathy of undetermined significance (MGUS). Importantly, IL-27, which unlike IL-15 does not display pro-angiogenic properties, maintained or increased the NK cell functions induced by suboptimal concentrations of IL-15. NK cell properties included killing of MMECs, IFN-γ production as well as a peculiar increase of NKp46 expression on NK cell surface. Finally, IL-27 showed a striking capability of up-regulating the expression of PD-L2 and HLA-I on tumor endothelium, whereas it did not modify that of PD-L1 and HLA-II.Our results suggest that cytokine-activated endogenous or adoptively transferred NK cells might support conventional therapies improving the outcome of MM patients.


Assuntos
Células Endoteliais/efeitos dos fármacos , Interleucinas/metabolismo , Células Matadoras Naturais/efeitos dos fármacos , Mieloma Múltiplo/imunologia , Idoso , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Feminino , Humanos , Interleucina-15/farmacologia , Células Matadoras Naturais/citologia , Células Matadoras Naturais/metabolismo , Masculino , Pessoa de Meia-Idade , Mieloma Múltiplo/metabolismo , Neovascularização Patológica , Receptores Virais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA