Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nat Commun ; 14(1): 4306, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474518

RESUMO

Herbarium collections are an important source of dated, identified and preserved DNA, whose use in comparative genomics and phylogeography can shed light on the emergence and evolutionary history of plant pathogens. Here, we reconstruct 13 historical genomes of the bacterial crop pathogen Xanthomonas citri pv. citri (Xci) from infected Citrus herbarium specimens. Following authentication based on ancient DNA damage patterns, we compare them with a large set of modern genomes to estimate their phylogenetic relationships, pathogenicity-associated gene content and several evolutionary parameters. Our results indicate that Xci originated in Southern Asia ~11,500 years ago (perhaps in relation to Neolithic climate change and the development of agriculture) and diversified during the beginning of the 13th century, after Citrus diversification and before spreading to the rest of the world (probably via human-driven expansion of citriculture through early East-West trade and colonization).


Assuntos
Citrus , Xanthomonas , Humanos , Filogenia , Xanthomonas/genética , Genômica , Citrus/microbiologia , Doenças das Plantas/microbiologia
2.
New Phytol ; 238(4): 1593-1604, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36764921

RESUMO

Functional analysis of large gene families in plant pathogens can be cumbersome using classical insertional mutagenesis. Additionally, Cas9 toxicity has limited the application of CRISPR-Cas9 for directed mutagenesis in bacteria. Here, we successfully applied a CRISPR interference strategy to investigate the cryptic role of the transcription activator-like effector (tale) multigene family in several plant-pathogenic Xanthomonas bacterial species, owing to their contribution to pathogen virulence. Single guide RNAs (sgRNAs) designed against Xanthomonas phaseoli pv manihotis tale conserved gene sequences efficiently silenced expression of all tales, with concomitant decrease in virulence and TALE-induced host gene expression. The system is readily translatable to other Xanthomonas species infecting rice, citrus, Brassica, and cassava, silencing up to 16 tales in a given strain using a single sgRNA. Complementation with plasmid-borne designer tales lacking the sgRNA-targeted sequence restored molecular and virulence phenotypes in all pathosystems. Our results evidenced that X. campestris pv campestris CN08 tales are relevant for symptom development in cauliflower. They also show that the MeSWEET10a sugar transporter is surprisingly targeted by the nonvascular cassava pathogen X. cassavae, highlighting a new example of TALE functional convergence between phylogenetically distant Xanthomonas. Overall, this novel technology provides a platform for discovery and rapid functional understanding of highly conserved gene families.


Assuntos
Oryza , Xanthomonas , Efetores Semelhantes a Ativadores de Transcrição/genética , Xanthomonas/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Virulência/genética , Transporte Biológico , Doenças das Plantas/microbiologia , Oryza/genética
3.
Annu Rev Phytopathol ; 60: 187-209, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35483672

RESUMO

Biotechnological advances now permit broad exploration of past microbial communities preserved in diverse substrates. Despite biomolecular degradation, high-throughput sequencing of preserved materials can yield invaluable genomic and metagenomic data from the past. This line of research has expanded from its initial human- and animal-centric foci to include plant-associated microbes (viruses, archaea, bacteria, fungi, and oomycetes), for which historical, archaeological, and paleontological data illuminate past epidemics and evolutionary history. Genetic mechanisms underlying the acquisition of microbial pathogenicity, including hybridization, polyploidization, and horizontal gene transfer, can now be reconstructed, as can gene-for-gene coevolution with plant hosts. Epidemiological parameters, such as geographic origin and range expansion, can also be assessed. Building on published case studies with individual phytomicrobial taxa, the stage is now set for broader, community-wide studies of preserved plant microbiomes to strengthen mechanistic understanding of microbial interactions and plant disease emergence.


Assuntos
Fungos , Microbiota , Animais , Archaea , Bactérias , Humanos , Plantas
4.
PLoS Pathog ; 17(7): e1009714, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34324594

RESUMO

Over the past decade, ancient genomics has been used in the study of various pathogens. In this context, herbarium specimens provide a precious source of dated and preserved DNA material, enabling a better understanding of plant disease emergences and pathogen evolutionary history. We report here the first historical genome of a crop bacterial pathogen, Xanthomonas citri pv. citri (Xci), obtained from an infected herbarium specimen dating back to 1937. Comparing the 1937 genome within a large set of modern genomes, we reconstructed their phylogenetic relationships and estimated evolutionary parameters using Bayesian tip-calibration inferences. The arrival of Xci in the South West Indian Ocean islands was dated to the 19th century, probably linked to human migrations following slavery abolishment. We also assessed the metagenomic community of the herbarium specimen, showed its authenticity using DNA damage patterns, and investigated its genomic features including functional SNPs and gene content, with a focus on virulence factors.


Assuntos
Citrus/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/história , Doenças das Plantas/microbiologia , Xanthomonas , Genoma Bacteriano , História do Século XX , Maurício , Filogenia , Xanthomonas/genética
5.
Sci Adv ; 6(46)2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33188025

RESUMO

Vascular plant pathogens travel long distances through host veins, leading to life-threatening, systemic infections. In contrast, nonvascular pathogens remain restricted to infection sites, triggering localized symptom development. The contrasting features of vascular and nonvascular diseases suggest distinct etiologies, but the basis for each remains unclear. Here, we show that the hydrolase CbsA acts as a phenotypic switch between vascular and nonvascular plant pathogenesis. cbsA was enriched in genomes of vascular phytopathogenic bacteria in the family Xanthomonadaceae and absent in most nonvascular species. CbsA expression allowed nonvascular Xanthomonas to cause vascular blight, while cbsA mutagenesis resulted in reduction of vascular or enhanced nonvascular symptom development. Phylogenetic hypothesis testing further revealed that cbsA was lost in multiple nonvascular lineages and more recently gained by some vascular subgroups, suggesting that vascular pathogenesis is ancestral. Our results overall demonstrate how the gain and loss of single loci can facilitate the evolution of complex ecological traits.


Assuntos
Xanthomonas , Bactérias , Hidrolases , Filogenia , Plantas/genética , Xanthomonas/genética
6.
BMC Microbiol ; 20(1): 296, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004016

RESUMO

BACKGROUND: Asiatic Citrus Canker, caused by Xanthomonas citri pv. citri, severely impacts citrus production worldwide and hampers international trade. Considerable regulatory procedures have been implemented to prevent the introduction and establishment of X. citri pv. citri into areas where it is not present. The effectiveness of this surveillance largely relies on the availability of specific and sensitive detection protocols. Although several PCR- or real-time PCR-based methods are available, most of them showed analytical specificity issues. Therefore, we developed new conventional and real-time quantitative PCR assays, which target a region identified by comparative genomic analyses, and compared them to existing protocols. RESULTS: Our assays target the X. citri pv. citri XAC1051 gene that encodes for a putative transmembrane protein. The real-time PCR assay includes an internal plant control (5.8S rDNA) for validating the assay in the absence of target amplification. A receiver-operating characteristic approach was used in order to determine a reliable cycle cut-off for providing accurate qualitative results. Repeatability, reproducibility and transferability between real-time devices were demonstrated for this duplex qPCR assay (XAC1051-2qPCR). When challenged with an extensive collection of target and non-target strains, both assays displayed a high analytical sensitivity and specificity performance: LOD95% = 754 CFU ml- 1 (15 cells per reaction), 100% inclusivity, 97.2% exclusivity for XAC1051-2qPCR; LOD95% = 5234 CFU ml- 1 (105 cells per reaction), 100% exclusivity and inclusivity for the conventional PCR. Both assays can detect the target from naturally infected citrus fruit. Interestingly, XAC1051-2qPCR detected X. citri pv. citri from herbarium citrus samples. The new PCR-based assays displayed enhanced analytical sensitivity and specificity when compared with previously published PCR and real-time qPCR assays. CONCLUSIONS: We developed new valuable detection assays useful for routine diagnostics and surveillance of X. citri pv. citri in citrus material. Their reliability was evidenced through numerous trials on a wide range of bacterial strains and plant samples. Successful detection of the pathogen was achieved from both artificially and naturally infected plants, as well as from citrus herbarium samples, suggesting that these assays will have positive impact both for future applied and academic research on this bacterium.


Assuntos
Proteínas de Bactérias/genética , Técnicas de Tipagem Bacteriana , Citrus/microbiologia , Proteínas de Membrana/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Xanthomonas/genética , Benchmarking , DNA Bacteriano/genética , Expressão Gênica , Humanos , Doenças das Plantas/microbiologia , Curva ROC , Reação em Cadeia da Polimerase em Tempo Real/normas , Reprodutibilidade dos Testes , Xanthomonas/isolamento & purificação
7.
BMC Genomics ; 20(1): 917, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31791238

RESUMO

BACKGROUND: Xanthomonads are an important clade of Gram-negative bacteria infecting a plethora of economically important host plants, including citrus. Knowledge about the pathogen's diversity and population structure are prerequisite for epidemiological surveillance and efficient disease management. Rapidly evolving genetic loci, such as Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR), are of special interest to develop new molecular typing tools. RESULTS: We analyzed CRISPR loci of 56 Xanthomonas citri pv. citri strains of world-wide origin, a regulated pathogen causing Asiatic citrus canker in several regions of the world. With one exception, 23 unique sequences built up the repertoire of spacers, suggesting that this set of strains originated from a common ancestor that already harbored these 23 spacers. One isolate originating from Pakistan contained a string of 14 additional, probably more recently acquired spacers indicating that this genetic lineage has or had until recently the capacity to acquire new spacers. Comparison of CRISPR arrays with previously obtained molecular typing data, such as amplified fragment length polymorphisms (AFLP), variable-number of tandem-repeats (VNTR) and genome-wide single-nucleotide polymorphisms (SNP), demonstrated that these methods reveal similar evolutionary trajectories. Notably, genome analyses allowed to generate a model for CRISPR array evolution in X. citri pv. citri, which provides a new framework for the genealogy of the citrus canker pathogen. CONCLUSIONS: CRISPR-based typing will further improve the accuracy of the genetic identification of X. citri pv. citri outbreak strains in molecular epidemiology analyses, especially when used concomitantly with another genotyping method.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Tipagem Molecular/métodos , Xanthomonas/classificação , Proteínas Associadas a CRISPR/genética , Técnicas de Genotipagem , Filogenia , Reação em Cadeia da Polimerase , Xanthomonas/genética
8.
BMC Genomics ; 19(1): 606, 2018 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-30103675

RESUMO

BACKGROUND: Host specialization is a hallmark of numerous plant pathogens including bacteria, fungi, oomycetes and viruses. Yet, the molecular and evolutionary bases of host specificity are poorly understood. In some cases, pathological convergence is observed for individuals belonging to distant phylogenetic clades. This is the case for Xanthomonas strains responsible for common bacterial blight of bean, spread across four genetic lineages. All the strains from these four lineages converged for pathogenicity on common bean, implying possible gene convergences and/or sharing of a common arsenal of genes conferring the ability to infect common bean. RESULTS: To search for genes involved in common bean specificity, we used a combination of whole-genome analyses without a priori, including a genome scan based on k-mer search. Analysis of 72 genomes from a collection of Xanthomonas pathovars unveiled 115 genes bearing DNA sequences specific to strains responsible for common bacterial blight, including 20 genes located on a plasmid. Of these 115 genes, 88 were involved in successive events of horizontal gene transfers among the four genetic lineages, and 44 contained nonsynonymous polymorphisms unique to the causal agents of common bacterial blight. CONCLUSIONS: Our study revealed that host specificity of common bacterial blight agents is associated with a combination of horizontal transfers of genes, and highlights the role of plasmids in these horizontal transfers.


Assuntos
Transferência Genética Horizontal , Interações Hospedeiro-Patógeno , Phaseolus/microbiologia , Doenças das Plantas/genética , Xanthomonas/patogenicidade , Proteínas de Bactérias/genética , Genoma Bacteriano , Phaseolus/genética , Phaseolus/crescimento & desenvolvimento , Filogenia , Doenças das Plantas/microbiologia , Polimorfismo de Nucleotídeo Único , Análise de Sequência de DNA , Virulência , Sequenciamento Completo do Genoma , Xanthomonas/classificação
9.
Annu Rev Phytopathol ; 54: 163-87, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27296145

RESUMO

How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.


Assuntos
Genoma Bacteriano , Especificidade de Hospedeiro , Doenças das Plantas/microbiologia , Xanthomonas/fisiologia , Xanthomonas/genética
10.
BMC Genomics ; 16: 1098, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26699528

RESUMO

BACKGROUND: The identification of factors involved in the host range definition and evolution is a pivotal challenge in the goal to predict and prevent the emergence of plant bacterial disease. To trace the evolution and find molecular differences between three pathotypes of Xanthomonas citri pv. citri that may explain their distinctive host ranges, 42 strains of X. citri pv. citri and one outgroup strain, Xanthomonas citri pv. bilvae were sequenced and compared. RESULTS: The strains from each pathotype form monophyletic clades, with a short branch shared by the A(w) and A pathotypes. Pathotype-specific recombination was detected in seven regions of the alignment. Using Ancestral Character Estimation, 426 SNPs were mapped to the four branches at the base of the A, A*, A(w) and A/A(w) clades. Several genes containing pathotype-specific nonsynonymous mutations have functions related to pathogenicity. The A pathotype is enriched for SNP-containing genes involved in defense mechanisms, while A* is significantly depleted for genes that are involved in transcription. The pathotypes differ by four gene islands that largely coincide with regions of recombination and include genes with a role in virulence. Both A* and A(w) are missing genes involved in defense mechanisms. In contrast to a recent study, we find that there are an extremely small number of pathotype-specific gene presences and absences. CONCLUSIONS: The three pathotypes of X. citri pv. citri that differ in their host ranges largely show genomic differences related to recombination, horizontal gene transfer and single nucleotide polymorphism. We detail the phylogenetic relationship of the pathotypes and provide a set of candidate genes involved in pathotype-specific evolutionary events that could explain to the differences in host range and pathogenicity between them.


Assuntos
Genoma de Planta , Análise de Sequência de DNA/métodos , Xanthomonas/classificação , Xanthomonas/genética , Evolução Molecular , Especificidade de Hospedeiro , Metagenômica/métodos , Filogenia , Polimorfismo de Nucleotídeo Único , Recombinação Genética
11.
BMC Genomics ; 16: 975, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26581393

RESUMO

BACKGROUND: The bacterial species Xanthomonas campestris infects a wide range of Brassicaceae. Specific pathovars of this species cause black rot (pv. campestris), bacterial blight of stock (pv. incanae) or bacterial leaf spot (pv. raphani). RESULTS: In this study, we extended the genomic coverage of the species by sequencing and annotating the genomes of strains from pathovar incanae (CFBP 1606R and CFBP 2527R), pathovar raphani (CFBP 5828R) and a pathovar formerly named barbareae (CFBP 5825R). While comparative analyses identified a large core ORFeome at the species level, the core type III effectome was limited to only three putative type III effectors (XopP, XopF1 and XopAL1). In Xanthomonas, these effector proteins are injected inside the plant cells by the type III secretion system and contribute collectively to virulence. A deep and strand-specific RNA sequencing strategy was adopted in order to experimentally refine genome annotation for strain CFBP 5828R. This approach also allowed the experimental definition of novel ORFs and non-coding RNA transcripts. Using a constitutively active allele of hrpG, a master regulator of the type III secretion system, a HrpG-dependent regulon of 141 genes co-regulated with the type III secretion system was identified. Importantly, all these genes but seven are positively regulated by HrpG and 56 of those encode components of the Hrp type III secretion system and putative effector proteins. CONCLUSIONS: This dataset is an important resource to mine for novel type III effector proteins as well as for bacterial genes which could contribute to pathogenicity of X. campestris.


Assuntos
Perfilação da Expressão Gênica , Genômica , Xanthomonas campestris/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Anotação de Sequência Molecular , Fases de Leitura Aberta , Regulon/genética , Xanthomonas campestris/imunologia
12.
Genome Announc ; 3(5)2015 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-26450740

RESUMO

Strains of Xanthomonas translucens pv. graminis cause bacterial wilt on several forage grasses. A draft genome sequence of pathotype strain CFBP 2053 was generated to facilitate the discovery of new pathogenicity factors and to develop diagnostic tools for the species X. translucens.

13.
Front Plant Sci ; 6: 545, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26284082

RESUMO

Transcription Activator-Like (TAL) effectors from Xanthomonas plant pathogenic bacteria can bind to the promoter region of plant genes and induce their expression. DNA-binding specificity is governed by a central domain made of nearly identical repeats, each determining the recognition of one base pair via two amino acid residues (a.k.a. Repeat Variable Di-residue, or RVD). Knowing how TAL effectors differ from each other within and between strains would be useful to infer functional and evolutionary relationships, but their repetitive nature precludes reliable use of traditional alignment methods. The suite QueTAL was therefore developed to offer tailored tools for comparison of TAL effector genes. The program DisTAL considers each repeat as a unit, transforms a TAL effector sequence into a sequence of coded repeats and makes pair-wise alignments between these coded sequences to construct trees. The program FuncTAL is aimed at finding TAL effectors with similar DNA-binding capabilities. It calculates correlations between position weight matrices of potential target DNA sequence predicted from the RVD sequence, and builds trees based on these correlations. The programs accurately represented phylogenetic and functional relationships between TAL effectors using either simulated or literature-curated data. When using the programs on a large set of TAL effector sequences, the DisTAL tree largely reflected the expected species phylogeny. In contrast, FuncTAL showed that TAL effectors with similar binding capabilities can be found between phylogenetically distant taxa. This suite will help users to rapidly analyse any TAL effector genes of interest and compare them to other available TAL genes and should improve our understanding of TAL effectors evolution. It is available at http://bioinfo-web.mpl.ird.fr/cgi-bin2/quetal/quetal.cgi.

14.
Genome Announc ; 3(1)2015 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-25676771

RESUMO

Xanthomonas translucens pv. cerealis is the causal agent of bacterial leaf streak on true grasses. The genome of the pathotype strain CFBP 2541 was sequenced in order to decipher mechanisms that provoke disease and to elucidate the role of transcription activator-like (TAL) type III effectors in pathogenicity.

15.
PLoS One ; 9(6): e98129, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24897119

RESUMO

MultiLocus Variable number of tandem repeat Analysis (MLVA) has been extensively used to examine epidemiological and evolutionary issues on monomorphic human pathogenic bacteria, but not on bacterial plant pathogens of agricultural importance albeit such tools would improve our understanding of their epidemiology, as well as of the history of epidemics on a global scale. Xanthomonas citri pv. citri is a quarantine organism in several countries and a major threat for the citrus industry worldwide. We screened the genomes of Xanthomonas citri pv. citri strain IAPAR 306 and of phylogenetically related xanthomonads for tandem repeats. From these in silico data, an optimized MLVA scheme was developed to assess the global diversity of this monomorphic bacterium. Thirty-one minisatellite loci (MLVA-31) were selected to assess the genetic structure of 129 strains representative of the worldwide pathological and genetic diversity of X. citri pv. citri. Based on Discriminant Analysis of Principal Components (DAPC), four pathotype-specific clusters were defined. DAPC cluster 1 comprised strains that were implicated in the major geographical expansion of X. citri pv. citri during the 20th century. A subset of 12 loci (MLVA-12) resolved 89% of the total diversity and matched the genetic structure revealed by MLVA-31. MLVA-12 is proposed for routine epidemiological identification of X. citri pv. citri, whereas MLVA-31 is proposed for phylogenetic and population genetics studies. MLVA-31 represents an opportunity for international X. citri pv. citri genotyping and data sharing. The MLVA-31 data generated in this study was deposited in the Xanthomonas citri genotyping database (http://www.biopred.net/MLVA/).


Assuntos
Citrus/microbiologia , Genes Bacterianos , Variação Genética , Doenças das Plantas/microbiologia , Xanthomonas/genética , Técnicas de Tipagem Bacteriana , Genoma Bacteriano , Genótipo , Análise de Sequência de DNA , Sequências de Repetição em Tandem
16.
Environ Microbiol ; 16(7): 2226-37, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24373118

RESUMO

Investigating the population biology of plant pathogens in their native areas is essential to understand the factors that shape their population structure and favour their spread. Monomorphic pathogens dispatch extremely low genetic diversity in invaded areas, and native areas constitute a major reservoir for future emerging strains. One of these, the gammaproteobacterium Xanthomonas citri pv. citri, causes Asiatic canker and is a considerable threat to citrus worldwide. We studied its population genetic structure by genotyping 555 strains from 12 Vietnam provinces at 14 tandem repeat loci and insertion sequences. Discriminant analysis of principal components identified six clusters. Five of them were composed of endemic strains distributed heterogeneously across sampled provinces. A sixth cluster, VN6, displayed a much lower diversity and a clonal expansion structure, suggesting recent epidemic spread. No differences in aggressiveness on citrus or resistance to bactericides were detected between VN6 and other strains. VN6 likely represents a case of bioinvasion following introduction in a native area likely through contaminated plant propagative material. Highly polymorphic markers are useful for revealing migration patterns of recently introduced populations of a monomorphic bacterial plant pathogen.


Assuntos
Citrus/microbiologia , Sequências Repetidas Invertidas , Filogenia , Xanthomonas/classificação , Xanthomonas/genética , Técnicas de Tipagem Bacteriana , Marcadores Genéticos , Variação Genética , Genótipo , Espécies Introduzidas , Família Multigênica , Filogeografia , Doenças das Plantas/microbiologia , Vietnã , Xanthomonas/metabolismo
17.
PLoS One ; 8(11): e79704, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278159

RESUMO

Xanthomonas axonopodis pv. manihotis (Xam) is the causal agent of bacterial blight of cassava, which is among the main components of human diet in Africa and South America. Current information about the molecular pathogenicity factors involved in the infection process of this organism is limited. Previous studies in other bacteria in this genus suggest that advanced draft genome sequences are valuable resources for molecular studies on their interaction with plants and could provide valuable tools for diagnostics and detection. Here we have generated the first manually annotated high-quality draft genome sequence of Xam strain CIO151. Its genomic structure is similar to that of other xanthomonads, especially Xanthomonas euvesicatoria and Xanthomonas citri pv. citri species. Several putative pathogenicity factors were identified, including type III effectors, cell wall-degrading enzymes and clusters encoding protein secretion systems. Specific characteristics in this genome include changes in the xanthomonadin cluster that could explain the lack of typical yellow color in all strains of this pathovar and the presence of 50 regions in the genome with atypical nucleotide composition. The genome sequence was used to predict and evaluate 22 variable number of tandem repeat (VNTR) loci that were subsequently demonstrated as polymorphic in representative Xam strains. Our results demonstrate that Xanthomonas axonopodis pv. manihotis strain CIO151 possesses ten clusters of pathogenicity factors conserved within the genus Xanthomonas. We report 126 genes that are potentially unique to Xam, as well as potential horizontal transfer events in the history of the genome. The relation of these regions with virulence and pathogenicity could explain several aspects of the biology of this pathogen, including its ability to colonize both vascular and non-vascular tissues of cassava plants. A set of 16 robust, polymorphic VNTR loci will be useful to develop a multi-locus VNTR analysis scheme for epidemiological surveillance of this disease.


Assuntos
Xanthomonas axonopodis/genética , Genoma Bacteriano/genética , Repetições Minissatélites/genética , Virulência/genética , Xanthomonas axonopodis/patogenicidade
18.
BMC Genomics ; 14: 761, 2013 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-24195767

RESUMO

BACKGROUND: Xanthomonads are plant-associated bacteria responsible for diseases on economically important crops. Xanthomonas fuscans subsp. fuscans (Xff) is one of the causal agents of common bacterial blight of bean. In this study, the complete genome sequence of strain Xff 4834-R was determined and compared to other Xanthomonas genome sequences. RESULTS: Comparative genomics analyses revealed core characteristics shared between Xff 4834-R and other xanthomonads including chemotaxis elements, two-component systems, TonB-dependent transporters, secretion systems (from T1SS to T6SS) and multiple effectors. For instance a repertoire of 29 Type 3 Effectors (T3Es) with two Transcription Activator-Like Effectors was predicted. Mobile elements were associated with major modifications in the genome structure and gene content in comparison to other Xanthomonas genomes. Notably, a deletion of 33 kbp affects flagellum biosynthesis in Xff 4834-R. The presence of a complete flagellar cluster was assessed in a collection of more than 300 strains representing different species and pathovars of Xanthomonas. Five percent of the tested strains presented a deletion in the flagellar cluster and were non-motile. Moreover, half of the Xff strains isolated from the same epidemic than 4834-R was non-motile and this ratio was conserved in the strains colonizing the next bean seed generations. CONCLUSIONS: This work describes the first genome of a Xanthomonas strain pathogenic on bean and reports the existence of non-motile xanthomonads belonging to different species and pathovars. Isolation of such Xff variants from a natural epidemic may suggest that flagellar motility is not a key function for in planta fitness.


Assuntos
Flagelos/genética , Aptidão Genética , Doenças das Plantas/microbiologia , Xanthomonas/genética , Sequência de Bases , Evolução Molecular , Fabaceae/genética , Fabaceae/crescimento & desenvolvimento , Fabaceae/microbiologia , Flagelos/fisiologia , Genoma Bacteriano , Filogenia , Doenças das Plantas/genética , Sementes/genética , Sementes/microbiologia , Análise de Sequência de DNA , Xanthomonas/classificação , Xanthomonas/patogenicidade
19.
Genome Announc ; 1(4)2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23990578

RESUMO

We report high-quality draft genome sequences of two strains (race 18 and 20) of Xanthomonas citri pv. malvacearum, the causal agent of bacterial blight of cotton. Comparative genomics will help to decipher mechanisms provoking disease and triggering defense responses and to develop new molecular tools for epidemiological surveillance.

20.
Genome Announc ; 1(4)2013 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-23990580

RESUMO

We report the draft genome sequence of the Xanthomonas cassavae type strain CFBP 4642, the causal agent of bacterial necrosis on cassava plants. These data will allow the comparison of this nonvascular pathogen with the vascular pathogen Xanthomonas axonopodis pv. manihotis, both infecting the same host, which will facilitate the development of diagnostic tools.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA