Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Appl Toxicol ; 42(12): 2016-2029, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35883269

RESUMO

Aluminum chlorohydrate (ACH) is a major aerosol component frequently used as the active ingredient in antiperspirants, and in vivo studies have raised a concern about its inhalation toxicity. Still, few studies have addressed its effects on the human respiratory tract. Therefore, we developed a study on ACH inhalation toxicity using an in vitro human alveolar cell model (A549 cells) with molecular and cellular markers of oxidative stress, immunotoxicity, and epigenetic changes. The chemical characterization of ACH suspensions indicated particle instability and aggregation; however, side-scatter analysis demonstrated significant particle uptake in cells exposed to ACH. Exposure of A549 cells to non-cytotoxic concentrations of ACH (0.25, 0.5, and 1 mg/ml) showed that ACH induced reactive oxygen species. Moreover, ACH upregulated TNF, IL6, IL8, and IL1A genes, but not the lncRNAs NEAT1 and MALAT1. Finally, no alterations on the global DNA methylation pattern (5-methylcytosine and 5-hydroxymethylcytosine) or the phosphorylation of histone H2AX (γ-H2AX) were observed. Our data suggest that ACH may induce oxidative stress and inflammation on alveolar cells, and A549 cells may be useful to identify cellular and molecular events that may be associated with adverse effects on the lungs. Still, further research is needed to ensure the inhalation safety of ACH.


Assuntos
Alumínio , Cosméticos , Humanos , Administração por Inalação , Aerossóis , Veículos Farmacêuticos , Exposição por Inalação/efeitos adversos
2.
Ecotoxicology ; 30(9): 1893-1909, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34379241

RESUMO

Fish cell spheroids are promising 3D culture models for vertebrate replacement in ecotoxicology. However, new alternative ecotoxicological methods must be adapted for applications in industry and for regulatory purposes; such methods must be cost-effective, simple to manipulate and provide rapid results. Therefore, we compared the effectiveness of the traditional hanging drop (HD), orbital shaking (OS), and HD combined with OS (HD+OS) methods on the formation of zebrafish cell line spheroids (ZFL and ZEM2S). Time in HD (3-5 days) and different 96-well plates [flat-bottom or ultra-low attachment of round-bottom (ULA-plates)] in OS were evaluated. Easy handling, rapid spheroid formation, uniform-sized spheroids, and circularity were assessed to identify the best spheroid protocol. Traditional HD alone did not result in ZFL spheroid formation, whereas HD (5 days)+OS did. When using the OS, spheroids only formed on the ULA-plate. Both HD+OS and OS were reproducible in size (177.50 ± 2.81 µm and 225.62 ± 19.20 µm, respectively) and circularity (0.83 ± 0.02 and 0.80 ± 0.01, respectively) of ZFL spheroids. Nevertheless, HD+OS required a considerable time to completely form spheroids (10 days) and intensive handling, whereas the OS was fast (5 days of incubation) and simple. OS also yielded reproducible ZEM2S spheroids in 1 day (226.23 ± 0.57 µm diameter and 0.80 ± 0.01 circularity). In conclusion, OS in ULA-plate is an effective and simple spheroid protocol for high-throughput ecotoxicity testing. This study contributes to identify a fast, reproducible, and simple protocol of single piscine spheroid formation in 96-well plates and supports the application of fish 3D model in industry and academia.


Assuntos
Técnicas de Cultura de Células , Peixe-Zebra , Animais , Linhagem Celular Tumoral , Fígado , Esferoides Celulares
3.
Regul Toxicol Pharmacol ; 124: 104976, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34139277

RESUMO

Dermal contact is the main route of exposure for most cosmetics; however, inhalation exposure could be significant for some formulations (e.g., aerosols, powders). Current cosmetic regulations do not require specific tests addressing respiratory irritation and sensitisation, and despite the prohibition of animal testing for cosmetics, no alternative methods have been validated to assess these endpoints to date. Inhalation hazard is mainly determined based on existing human and animal evidence, read-across, and extrapolation of data from different target organs or tissues, such as the skin. However, because of mechanistic differences, effects on the skin cannot predict effects on the respiratory tract, which indicates a substantial need for the development of new approach methodologies addressing respiratory endpoints for inhalable chemicals in general. Cosmetics might present a particularly significant need for risk assessments of inhalation exposure to provide a more accurate toxicological evaluation and ensure consumer safety. This review describes the differences in the mechanisms of irritation and sensitisation between the skin and the respiratory tract, the progress that has already been made, and what still needs to be done to fill the gap in the inhalation risk assessment of cosmetic ingredients.


Assuntos
Qualidade de Produtos para o Consumidor/normas , Cosméticos/toxicidade , Sistema Respiratório/efeitos dos fármacos , Testes de Toxicidade/métodos , Aerossóis , Alternativas aos Testes com Animais , Animais , Cosméticos/normas , Humanos , Exposição por Inalação/efeitos adversos , Modelos Animais , Pós , Medição de Risco/métodos , Medição de Risco/normas , Testes de Toxicidade/normas
4.
Int J Biol Macromol ; 182: 977-986, 2021 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-33887289

RESUMO

Lignin is a complex phenolic biopolymer present in plant cell walls and a by-product of the cellulose pulping industry. Lignin has functional properties, such as antioxidant activity, that make it a potential natural active ingredient for health-care products. However, not all safety aspects of lignin fractions have been adequately investigated. Herein, we evaluated the antioxidant and genotoxic potential of two hardwood kraft lignins (F3 and F5). The chemical characterization of F3 and F5 demonstrated their thermal stability and the presence of different phenolic units, while the DPPH assay confirmed the antioxidant activity of these lignin fractions. Despite being antioxidants in the DPPH assay, F3 and F5 were capable of generating intracellular reactive oxygen species (ROS) and subsequently causing oxidative DNA damage (Comet assay) in HepG2 cells. The biological relevance of the DPPH assay might be uncertain in some cases; therefore, we suggest combining in chemico tests with biological system-based tests to determine efficacy and safety levels of lignins and define appropriate applications of lignins for consumer products. Moreover, kraft lignins obtained by acid precipitation may pose risks to human health; however, as genotoxicity is not the sole endpoint of toxicity required in hazard assessments, additional toxicological evaluations are needed.


Assuntos
Antioxidantes/química , Lignina/química , Mutagênicos/química , Antioxidantes/toxicidade , Dano ao DNA , Células Hep G2 , Humanos , Lignina/toxicidade , Mutagênicos/toxicidade , Estresse Oxidativo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA