RESUMO
DDX41 (DEADbox helicase 41) is a member of the largest family of RNA helicases. The DEAD-box RNA helicases share a highly conserved core structure and regulate all aspects of RNA metabolism. The functional role of DDX41 in innate immunity is also highly conserved. DDX41 acts as a sensor of viral DNA and activates the STING-TBK1-IRF3-type I IFN signaling pathway. Germline heterozygous variants in DDX41 have been reported in familial myelodysplasia syndrome (MDS)/acute myeloid leukemia (AML) patients; most patients also acquired a somatic variant in the second DDX41 allele. Here, we report a patient who inherited compound heterozygous DDX41 variants and presented with bone dysplasia, ichthyosis, and dysmorphic features. Functional analyses of the patient-derived dermal fibroblasts revealed a reduced abundance of DDX41 and abrogated activation of the IFN genes through the STING-type I interferon pathway. Genome-wide transcriptome analyses in the patient's fibroblasts revealed significant gene dysregulation and changes in the RNA splicing events. The patient's fibroblasts also displayed upregulation of periostin mRNA expression. Using an RNA binding protein assay, we identified DDX41 as a novel regulator of periostin expression. Our results suggest that functional impairment of DDX41, along with dysregulated periostin expression, likely contributes to this patient's multisystem disorder.
RESUMO
Free sialic acid storage disorder (FSASD) is a rare, autosomal recessive, neurodegenerative disorder caused by biallelic mutations in SLC17A5, encoding the lysosomal transmembrane sialic acid exporter, SLC17A5. Defects in SLC17A5 lead to lysosomal accumulation of free sialic acid and other acid hexoses. The clinical spectrum of FSASD ranges from mild (Salla disease) to severe infantile forms. The pathobiology underlying FSASD remains elusive. In this study, two induced pluripotent stem cell (iPSC) lines were generated from a mild and an intermediate FSASD patient and characterized to provide much-needed additional models for basic and translational studies.
RESUMO
GM1 gangliosidosis is an ultra-rare inherited neurodegenerative lysosomal storage disorder caused by biallelic mutations in the GLB1 gene. GM1 is uniformly fatal and has no approved therapies, although clinical trials investigating gene therapy as a potential treatment for this condition are underway. Novel outcome measures or biomarkers demonstrating the longitudinal effects of GM1 and potential recovery due to therapeutic intervention are urgently needed to establish efficacy of potential therapeutics. One promising tool is differential tractography, a novel imaging modality utilizing serial diffusion weighted imaging (DWI) to quantify longitudinal changes in white matter microstructure. In this study, we present the novel use of differential tractography in quantifying the progression of GM1 alongside age-matched neurotypical controls. We analyzed 113 DWI scans from 16 GM1 patients and 32 age-matched neurotypical controls to investigate longitudinal changes in white matter pathology. GM1 patients showed white matter degradation evident by both the number and size of fiber tract loss. In contrast, neurotypical controls showed longitudinal white matter improvements as evident by both the number and size of fiber tract growth. We also corroborated these findings by documenting significant correlations between cognitive global impression (CGI) scores of clinical presentations and our differential tractography derived metrics in our GM1 cohort. Specifically, GM1 patients who lost more neuronal fiber tracts also had a worse clinical presentation. This result demonstrates the importance of differential tractography as an important biomarker for disease progression in GM1 patients with potential extension to other neurodegenerative diseases and therapeutic intervention.
RESUMO
PURPOSE: To characterize brain MR imaging findings in a cohort of 58 patients with ECD and to evaluate relationship between these findings and the BRAFV600E pathogenic variant. METHODS: ECD patients of any gender and ethnicity, aged 2-80 years, with biopsy-confirmed ECD were eligible to enroll in this study. Two radiologists experienced in evaluating ECD CNS disease activity reviewed MRI studies. Any disagreements were resolved by a third reader. Frequencies of observed lesions were reported. The association between the distribution of CNS lesions and the BRAFV600Epathogenic variant was evaluated using Fisher's exact test and odd ratio. RESULTS: The brain MRI of all 58 patients with ECD revealed some form of CNS lesions, most likely due to ECD. Cortical lesions were noted in 27/58 (46.6 %) patients, cerebellar lesions in 15/58 (25.9 %) patients, brain stem lesions in 17/58 cases (29.3 %), and pituitary lesions in 10/58 (17.2 %) patients. Premature cortical atrophy was observed in 8/58 (13.8 %) patients. BRAFV600E pathogenic variant was significantly associated with cerebellar lesions (p = 0.016) and bilateral brain stem lesions (p = 0.043). A trend toward significance was noted for cerebral atrophy (p = 0.053). CONCLUSION: The study provides valuable insights into the brain MRI findings in ECD and their association with the BRAFV600E pathogenic variant, particularly its association in cases with bilateral lesions. We are expanding our understanding of how ECD affects cerebral structures. Knowledge of MRI CNS lesion patterns and their association with mutations such as the BRAF variant is helpful for both prognosis and clinical management.
Assuntos
Doença de Erdheim-Chester , Imageamento por Ressonância Magnética , Humanos , Masculino , Feminino , Doença de Erdheim-Chester/diagnóstico por imagem , Doença de Erdheim-Chester/genética , Imageamento por Ressonância Magnética/métodos , Pessoa de Meia-Idade , Idoso , Adulto , Adolescente , Criança , Idoso de 80 Anos ou mais , Adulto Jovem , Pré-Escolar , Estudos Retrospectivos , Proteínas Proto-Oncogênicas B-raf/genética , Encéfalo/diagnóstico por imagem , Encéfalo/patologiaRESUMO
The precise regulation of DNA replication is vital for cellular division and genomic integrity. Central to this process is the replication factor C (RFC) complex, encompassing five subunits, which loads proliferating cell nuclear antigen onto DNA to facilitate the recruitment of replication and repair proteins and enhance DNA polymerase processivity. While RFC1's role in cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is known, the contributions of RFC2-5 subunits on human Mendelian disorders is largely unexplored. Our research links bi-allelic variants in RFC4, encoding a core RFC complex subunit, to an undiagnosed disorder characterized by incoordination and muscle weakness, hearing impairment, and decreased body weight. We discovered across nine affected individuals rare, conserved, predicted pathogenic variants in RFC4, all likely to disrupt the C-terminal domain indispensable for RFC complex formation. Analysis of a previously determined cryo-EM structure of RFC bound to proliferating cell nuclear antigen suggested that the variants disrupt interactions within RFC4 and/or destabilize the RFC complex. Cellular studies using RFC4-deficient HeLa cells and primary fibroblasts demonstrated decreased RFC4 protein, compromised stability of the other RFC complex subunits, and perturbed RFC complex formation. Additionally, functional studies of the RFC4 variants affirmed diminished RFC complex formation, and cell cycle studies suggested perturbation of DNA replication and cell cycle progression. Our integrated approach of combining in silico, structural, cellular, and functional analyses establishes compelling evidence that bi-allelic loss-of-function RFC4 variants contribute to the pathogenesis of this multisystemic disorder. These insights broaden our understanding of the RFC complex and its role in human health and disease.
Assuntos
Proteína de Replicação C , Humanos , Proteína de Replicação C/genética , Proteína de Replicação C/metabolismo , Masculino , Células HeLa , Feminino , Fenótipo , Replicação do DNA/genética , Adulto , Mutação , Antígeno Nuclear de Célula em Proliferação/metabolismo , Antígeno Nuclear de Célula em Proliferação/genética , AlelosRESUMO
Alkaptonuria is a rare disorder of tyrosine catabolism caused by deficiency of homogentisate 1,2-dioxygenase that leads to accumulation of homogentisic acid (HGA). Deposition of HGA-derived polymers in connective tissue causes progressive arthropathy of the spine and large joints, cardiac valvular disease, and genitourinary stones beginning in the fourth decade of life. Nitisinone, a potent inhibitor of the upstream enzyme, 4-hydroxyphenylpyruvate dioxygenase, dramatically reduces HGA production. As such, nitisinone is a proposed treatment for alkaptonuria. A randomized clinical trial of nitisinone in alkaptonuria confirmed the biochemical efficacy and tolerability of nitisinone for patients with alkaptonuria but the selected primary outcome did not demonstrate significant clinical benefit. Given that alkaptonuria is a rare disease with slow progression and variable presentation, identifying outcome parameters that can detect significant change during a time-limited clinical trial is challenging. To gain insight into patient-perceived improvements in quality of life and corresponding changes in physical function associated with nitisinone use, we conducted a post-hoc per protocol analysis of patient-reported outcomes and a functional assessment. Analysis revealed that nitisinone-treated patients showed significant improvements in complementary domains of the 36-Item Short-Form Survey (SF-36) and 6-min walk test (6MWT). Together, these findings suggest that nitisinone improves both quality of life and function of patients with alkaptonuria. The observed trends support nitisinone as a therapy for alkaptonuria.
Assuntos
Alcaptonúria , Cicloexanonas , Ácido Homogentísico , Nitrobenzoatos , Medidas de Resultados Relatados pelo Paciente , Alcaptonúria/tratamento farmacológico , Humanos , Cicloexanonas/uso terapêutico , Nitrobenzoatos/uso terapêutico , Feminino , Masculino , Pessoa de Meia-Idade , Ácido Homogentísico/urina , Ácido Homogentísico/metabolismo , 4-Hidroxifenilpiruvato Dioxigenase/antagonistas & inibidores , Adulto , Idoso , Resultado do Tratamento , Qualidade de Vida , Homogentisato 1,2-Dioxigenase/genéticaRESUMO
N-Acetyl-D-mannosamine (ManNAc) is an endogenous monosaccharide and precursor of N-acetylneuraminic acid (Neu5Ac), a critical sialic acid. ManNAc is currently under clinical development to treat GNE myopathy, a rare muscle-wasting disease. In this randomized, open-label, 2-sequence, crossover study, 16 healthy women and men were administered a single oral dose of ManNAc under fasting and fed conditions. Blood samples were collected for 48 hours after dosing for quantification of plasma ManNAc and Neu5Ac concentrations. Noncompartmental pharmacokinetic and deconvolution analyses were performed using baseline-corrected plasma concentration data. Administration of ManNAc in the fed state resulted in a 1.6-fold increase in ManNAc exposure, compared to fasting conditions. A concurrent increase in Neu5Ac exposure was observed in the presence of food. Deconvolution analysis indicated that the findings were attributed to prolonged absorption rather than an enhanced rate of absorption. The impact of food on ManNAc pharmacokinetics was greater in women than men (fed/fasted area under the concentration-time curve from time 0 to infinity mean ratio: 198% compared to 121%). It is hypothesized that the presence of food slows gastric emptying, allowing a gradual release of ManNAc into the small intestine, translating into improved ManNAc absorption. The results suggest that taking ManNAc with food may enhance its therapeutic activity and/or reduce the daily dosage requirement.
Assuntos
Estudos Cross-Over , Interações Alimento-Droga , Hexosaminas , Ácido N-Acetilneuramínico , Humanos , Feminino , Masculino , Adulto , Hexosaminas/administração & dosagem , Hexosaminas/farmacocinética , Administração Oral , Adulto Jovem , Ácido N-Acetilneuramínico/administração & dosagem , Ácido N-Acetilneuramínico/farmacocinética , Ácido N-Acetilneuramínico/sangue , Pessoa de Meia-Idade , Jejum , Voluntários Saudáveis , Área Sob a Curva , Absorção IntestinalRESUMO
Hermansky-Pudlak syndrome (HPS) is a group of rare genetic disorders, with several subtypes leading to fatal adult-onset pulmonary fibrosis (PF) and no effective treatment. Circulating biomarkers detecting early PF have not been identified. We investigated whether endocannabinoids could serve as blood biomarkers of PF in HPS. We measured endocannabinoids in the serum of HPS, IPF, and healthy human subjects and in a mouse model of HPSPF. Pulmonary function tests (PFT) were correlated with endocannabinoid measurements. In a pale ear mouse model of bleomycin-induced HPSPF, serum endocannabinoid levels were measured with and without treatment with zevaquenabant (MRI-1867), a peripheral CB1R and iNOS antagonist. In three separate cohorts, circulating anandamide levels were increased in HPS-1 patients with or without PF, compared to healthy volunteers. This increase was not observed in IPF patients or in HPS-3 patients, who do not have PF. Circulating anandamide (AEA) levels were negatively correlated with PFT. Furthermore, a longitudinal study over the course of 5-14 years with HPS-1 patients indicated that circulating AEA levels begin to increase with the fibrotic lung process even at the subclinical stages of HPSPF. In pale ear mice with bleomycin-induced HpsPF, serum AEA levels were significantly increased in the earliest stages of PF and remained elevated at a later fibrotic stage. Zevaquenabant treatment reduced the increased AEA levels and attenuated progression in bleomycin-induced HpsPF. Circulating AEA may be a prognostic blood biomarker for PF in HPS-1 patients. Further studies are indicated to evaluate endocannabinoids as potential surrogate biomarkers in progressive fibrotic lung diseases.
RESUMO
BACKGROUND: Arterial calcification due to deficiency of CD73 (ACDC; OMIM 211800) is a rare genetic disease resulting in calcium deposits in arteries and small joints causing claudication, resting pain, severe joint pain, and deformities. Currently, there are no standard treatments for ACDC. Our previous work identified etidronate as a potential targeted ACDC treatment, using in vitro and in vivo disease models with patient-derived cells. In this study, we test the safety and effectiveness of etidronate in attenuating the progression of lower-extremity arterial calcification and vascular blood flow based on the computed tomography (CT) calcium score and ankle-brachial index (ABI). METHODS: Seven adult patients with a confirmed genetic diagnosis of ACDC were enrolled in an open-label, nonrandomized, single-arm pilot study for etidronate treatment. They took etidronate daily for 14 days every 3 months and were examined at the NIH Clinical Center bi-annually for 3 years. They received a baseline evaluation as well as yearly follow up after treatment. Study visits included imaging studies, exercise tolerance tests with ABIs, clinical blood and urine testing, and full dental exams. RESULTS: Etidronate treatment appeared to have slowed the progression of further vascular calcification in lower extremities as measured by CT but did not have an effect in reversing vascular and/or periarticular joint calcifications in our small ACDC cohort. CONCLUSIONS: Etidronate was found to be safe and well tolerated by our patients and, despite the small sample size, appeared to show an effect in slowing the progression of calcification in our ACDC patient cohort.(ClinicalTrials.gov Identifier NCT01585402).
Assuntos
5'-Nucleotidase , Ácido Etidrônico , Proteínas Ligadas por GPI , Calcificação Vascular , Humanos , Projetos Piloto , Calcificação Vascular/tratamento farmacológico , Calcificação Vascular/diagnóstico por imagem , Ácido Etidrônico/uso terapêutico , Ácido Etidrônico/efeitos adversos , Masculino , Feminino , Pessoa de Meia-Idade , Resultado do Tratamento , 5'-Nucleotidase/genética , 5'-Nucleotidase/deficiência , Fatores de Tempo , Proteínas Ligadas por GPI/sangue , Índice Tornozelo-Braço , Adulto , Conservadores da Densidade Óssea/uso terapêutico , Conservadores da Densidade Óssea/efeitos adversos , Progressão da Doença , Doença Arterial Periférica/tratamento farmacológico , Doença Arterial Periférica/diagnóstico , Doença Arterial Periférica/fisiopatologia , Idoso , Extremidade Inferior/irrigação sanguínea , Angiografia por Tomografia Computadorizada , Predisposição Genética para Doença , Fluxo Sanguíneo RegionalRESUMO
BACKGROUND: Cystine-depleting therapy in nephropathic cystinosis is currently monitored via the white blood cell cystine assay, although its application and usefulness are limited by practical and technical issues. Therefore, alternative biomarkers that are widely available, more economical and less technically demanding, while reliably reflecting long-term adherence to cysteamine treatment, are desirable. Recently, we proposed chitotriosidase enzyme activity as a potential novel biomarker for the therapeutic monitoring of cysteamine treatment in cystinosis. In this study, we aimed to validate our previous findings and to confirm the value of chitotriosidase in the management of cystinosis therapy. MATERIALS & METHODS: A retrospective study was conducted on 12 patients treated at the National Institutes of Health Clinical Center and followed up for at least 2 years. Plasma chitotriosidase enzyme activity was correlated with corresponding clinical and biochemical data. RESULTS: Plasma chitotriosidase enzyme activity significantly correlated with WBC cystine levels, cysteamine total daily dosage and a Composite compliance score. Moreover, plasma chitotriosidase was a significant independent predictor for WBC cystine levels, and cut-off values were established in both non-kidney transplanted and kidney transplanted cystinosis patients to distinguish patients with a good versus poor compliance with cysteamine treatment. Our observations are consistent with those of our previous study and validate our findings. CONCLUSIONS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients. SYNOPSIS: Chitotriosidase enzyme activity is a valid potential alternative biomarker for monitoring cysteamine treatment in nephropathic cystinosis patients.
Assuntos
Cisteamina , Cistina , Cistinose , Hexosaminidases , Humanos , Cisteamina/uso terapêutico , Masculino , Feminino , Cistinose/tratamento farmacológico , Cistinose/sangue , Estudos Retrospectivos , Hexosaminidases/sangue , Adolescente , Cistina/sangue , Criança , Adulto , Biomarcadores/sangue , Adulto Jovem , Monitoramento de Medicamentos/métodos , Eliminadores de Cistina/uso terapêutico , Pré-Escolar , Transplante de RimRESUMO
POEMS Syndrome is a constellation of findings including Polyneuropathy, Organomegaly, Endocrinopathy, Monoclonal plasma cell disorder, and Skin changes. Calciphylaxis, a microangiopathy involving vascular calcification and thrombotic occlusions, occurs rarely in POEMS. We present a case of prominent calciphylaxis that antedated the diagnosis of POEMS. The patient presented with extensive ecchymoses progressing to necrotic lesions in the setting of acute renal injury. Previously, she had chronic slowly progressive polyneuropathy, splenomegaly, hypothyroidism, amenorrhea, and ascites. Calciphylaxis was diagnosed on skin biopsy, and POEMS was diagnosed based upon clinical findings plus a bone marrow biopsy showing 15% lambda chain restricted plasma cells. Treatment for the calciphylaxis was supportive with fluids, tissue debridement, wound vacuum devices and antibiotics for secondary infection. Myeloma was treated with bortezomib and steroids. All aspects of the patient's manifestations improved. We conclude that calciphylaxis can be a prominent feature of POEMS and can appear prior to recognition of the full-blown syndrome.
RESUMO
Neuronal ceroid lipofuscinosis (NCL), type 6 (CLN6) is a neurodegenerative disorder associated with progressive neurodegeneration leading to dementia, seizures, and retinopathy. CLN6 encodes a resident-ER protein involved in trafficking lysosomal proteins to the Golgi. CLN6p deficiency results in lysosomal dysfunction and deposition of storage material comprised of Nile Red + lipids/proteolipids that include subunit C of the mitochondrial ATP synthase (SUBC). White matter involvement has been recently noted in several CLN6 animal models and several CLN6 subjects had neuroimaging was consistent with leukodystrophy. CLN6 patient-derived induced pluripotent stem cells (IPSCs) were generated from several of these subjects. IPSCs were differentiated into oligodendroglia or neurons using well-established small-molecule protocols. A doxycycline-inducible transgenic system expressing neurogenin-2 (the I3N-system) was also used to generate clonal IPSC-lines (I3N-IPSCs) that could be rapidly differentiated into neurons (I3N-neurons). All CLN6 IPSC-derived neural cell lines developed significant storage material, CLN6-I3N-neuron lines revealed significant Nile Red + and SUBC + storage within three and seven days of neuronal induction, respectively. CLN6-I3N-neurons had decreased tripeptidyl peptidase-1 activity, increased Golgi area, along with increased LAMP1 + in cell bodies and neurites. SUBC + signal co-localized with LAMP1 + signal. Bulk-transcriptomic evaluation of control- and CLN6-I3N-neurons identified >1300 differentially-expressed genes (DEGs) with Gene Ontogeny (GO) Enrichment and Canonical Pathway Analyses having significant changes in lysosomal, axonal, synaptic, and neuronal-apoptotic gene pathways. These findings indicate that CLN6-IPSCs and CLN6-I3N-IPSCs are appropriate cellular models for this disorder. These I3N-neuron models may be particularly valuable for developing therapeutic interventions with high-throughput drug screening assays and/or gene therapy.
RESUMO
Every year on February 28, the global community comes together to observe Rare Disease Day, a day dedicated to raising awareness and understanding for the millions of individuals who live with rare disorders. While individual rare diseases may seem uncommon, their collective impact is significant, affecting the lives of countless families and communities worldwide. This day serves as a crucial platform to amplify the voices of those affected, advocate for increased research and support, and inspire hope for a future where rare diseases can be prevented, diagnosed earlier, and effectively treated.
Assuntos
Doenças Raras , Humanos , Doenças Raras/diagnóstico , Doenças Raras/epidemiologia , Doenças Raras/terapiaRESUMO
RNA polymerase III (Pol III, POLR3) synthesizes tRNAs and other small non-coding RNAs. Human POLR3 pathogenic variants cause a range of developmental disorders, recapitulated in part by mouse models, yet some aspects of POLR3 deficiency have not been explored. We characterized a human POLR3B:c.1625A>G;p.(Asn542Ser) disease variant that was found to cause mis-splicing of POLR3B. Genome-edited POLR3B1625A>G HEK293 cells acquired the mis-splicing with decreases in multiple POLR3 subunits and TFIIIB, although display auto-upregulation of the Pol III termination-reinitiation subunit POLR3E. La protein was increased relative to its abundant pre-tRNA ligands which bind via their U(n)U-3'-termini. Assays for cellular transcription revealed greater deficiencies for tRNA genes bearing terminators comprised of 4Ts than of ≥5Ts. La-knockdown decreased Pol III ncRNA expression unlinked to RNA stability. Consistent with these effects, small-RNAseq showed that POLR3B1625A>G and patient fibroblasts express more tRNA fragments (tRFs) derived from pre-tRNA 3'-trailers (tRF-1) than from mature-tRFs, and higher levels of multiple miRNAs, relative to control cells. The data indicate that decreased levels of Pol III transcripts can lead to functional excess of La protein which reshapes small ncRNA profiles revealing new depth in the Pol III system. Finally, patient cell RNA analysis uncovered a strategy for tRF-1/tRF-3 as POLR3-deficiency biomarkers.
RESUMO
INTRODUCTION: Chediak-Higashi syndrome (CHS) is a rare autosomal recessive disorder characterised by partial oculocutaneous albinism, a bleeding diathesis, immunological dysfunction and neurological impairment. Bi-allelic loss-of-function variants in LYST cause CHS. LYST encodes the lysosomal trafficking regulator, a highly conserved 429 kDa cytoplasmic protein with an unknown function. METHODS: To further our understanding of the pathogenesis of CHS, we conducted clinical evaluations on individuals with CHS enrolled in our natural history study. Using genomic DNA Sanger sequencing, we identified novel pathogenic LYST variants. Additionally, we performed an extensive literature review to curate reported LYST variants and classified these novel and reported variants according to the American College of Medical Genetics/Association for Molecular Pathology variant interpretation guidelines. RESULTS: Our investigation unveiled 11 novel pathogenic LYST variants in eight patients with a clinical diagnosis of CHS, substantiated by the presence of pathognomonic giant intracellular granules. From these novel variants, together with a comprehensive review of the literature, we compiled a total of 147 variants in LYST, including 61 frameshift variants (41%), 44 nonsense variants (30%), 23 missense variants (16%), 13 splice site variants or small genomic deletions for which the coding effect is unknown (9%), 5 in-frame variants (3%) and 1 start-loss variant (1%). Notably, a genotype-phenotype correlation emerged, whereby individuals harbouring at least one missense or in-frame variant generally resulted in milder disease, while those with two nonsense or frameshift variants generally had more severe disease. CONCLUSION: The identification of novel pathogenic LYST variants and improvements in variant classification will provide earlier diagnoses and improved care to individuals with CHS.
Assuntos
Síndrome de Chediak-Higashi , Humanos , Síndrome de Chediak-Higashi/genética , Síndrome de Chediak-Higashi/diagnóstico , Síndrome de Chediak-Higashi/patologia , Mutação , Proteínas/genética , Mutação de Sentido Incorreto , Sequência de Bases , Proteínas de Transporte Vesicular/genéticaRESUMO
BACKGROUND: Benign adult familial myoclonic epilepsy (BAFME) is an autosomal dominant disorder characterized by cortical tremors and seizures. Six types of BAFME, all caused by pentanucleotide repeat expansions in different genes, have been reported. However, several other BAFME cases remain with no molecular diagnosis. OBJECTIVES: We aim to characterize clinical features and identify the mutation causing BAFME in a large Malian family with 10 affected members. METHODS: Long-read whole genome sequencing, repeat-primed polymerase chain reaction and RNA studies were performed. RESULTS: We identified TTTTA repeat expansions and TTTCA repeat insertions in intron 4 of the RAI1 gene that co-segregated with disease status in this family. TTTCA repeats were absent in 200 Malian controls. In the affected individuals, we found a read with only nine TTTCA repeat units and somatic instability. The RAI1 repeat expansions cause the only BAFME type in which the disease-causing repeats are in a gene associated with a monogenic disorder in the haploinsufficiency state (ie, Smith-Magenis syndrome [SMS]). Nevertheless, none of the Malian patients exhibited symptoms related to SMS. Moreover, leukocyte RNA levels of RAI1 in six Malian BAFME patients were no different from controls. CONCLUSIONS: These findings establish a new type of BAFME, BAFME8, in an African family and suggest that haploinsufficiency is unlikely to be the main pathomechanism of BAFME. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.
Assuntos
Epilepsias Mioclônicas , Adulto , Humanos , Epilepsias Mioclônicas/genética , Íntrons , Repetições de Microssatélites , RNA , Convulsões/genéticaRESUMO
BACKGROUND: XMEN (X-linked immunodeficiency with magnesium defect, Epstein-Barr virus (EBV), and N-linked glycosylation defect) disease results from loss-of-function mutations in MAGT1, a protein that serves as a magnesium transporter and a subunit of the oligosaccharyltransferase (OST) complex. MAGT1 deficiency disrupts N-linked glycosylation, a critical regulator of immune function. XMEN results in recurrent EBV infections and a propensity for EBV-driven malignancies. Although XMEN is recognized as a systemic congenital disorder of glycosylation (CDG), its neurological involvement is rare and poorly characterized. CASES: Two young men, ages 32 and 33, are described here with truncating mutations in MAGT1, progressive behavioral changes, and neurodegenerative symptoms. These features manifested well into adulthood. Both patients still presented with many of the molecular and clinical hallmarks of the typical XMEN patient, including chronic EBV viremia and decreased expression of NKG2D. CONCLUSION: While previously unrecognized, XMEN may include prominent and disabling CNS manifestations. How MAGT1 deficiency directly or indirectly contributes to neurodegeneration remains unclear. Elucidating this mechanism may contribute to the understanding of neurodegeneration more broadly.
Assuntos
Proteínas de Transporte de Cátions , Infecções por Vírus Epstein-Barr , Neoplasias , Masculino , Adulto , Humanos , Magnésio/metabolismo , Infecções por Vírus Epstein-Barr/complicações , Infecções por Vírus Epstein-Barr/genética , Infecções por Vírus Epstein-Barr/diagnóstico , Herpesvirus Humano 4/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Neoplasias/diagnósticoRESUMO
OBJECTIVE: The aim of this study was to characterize the distribution of skeletal involvement in Erdheim-Chester disease (ECD) by using radiography, computed tomography (CT), 18F-FDG positron emission tomography/computed tomography (PET/CT), and bone scans, as well as looking for associations with the BRAFV600E mutation. MATERIAL AND METHODS: Prospective study of 50 consecutive patients with biopsy-confirmed ECD who had radiographs, CT, 18F-FDG PET/CT, and Tc-99m MDP bone scans. At least two experienced radiologists with expertise in the relevant imaging studies analyzed the images. Summary statistics were expressed as the frequency with percentages for categorical data. Fisher's exact test, as well as odds ratios (OR) with 95 % confidence intervals (CI), were used to link imaging findings to BRAFV600E mutation. The probability for co-occurrence of bone involvement at different locations was calculated and graphed as a heat map. RESULTS: All 50 cases revealed skeletal involvement at different regions of the skeleton. The BRAFV600E mutation, which was found in 24 patients, was correlated with femoral and tibial involvement on 18F-FDG PET/CT and bone scan. The appearance of changes on the femoral, tibial, fibular, and humeral involvement showed correlation with each other based on heat maps of skeletal involvement on CT. CONCLUSION: This study reports the distribution of skeletal involvement in a cohort of patients with ECD. CT is able to detect the majority of ECD skeletal involvement. Considering the complementary nature of information from different modalities, imaging of ECD skeletal involvement is optimized by using a multi-modality strategy.