Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
J Cell Mol Med ; 26(9): 2646-2657, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35355406

RESUMO

Acute myeloid leukaemia (AML) is a highly heterogeneous haematologic malignancy with poor prognosis. We previously showed synergistic antileukaemic interaction between exportin 1 (XPO1) inhibitor KPT-330 (Selinexor) and Bcl-2 inhibitor venetoclax (ABT-199) in preclinical models of AML, which was partially meditated by Mcl-1, although the full mechanism of action remains unknown. In this study, using real-time RT-PCR and Western blot analysis, we show that inhibition of XPO1 via KPT-330 or KPT-8602 (Eltanexor) decreases the mRNA and protein levels of c-Myc, CHK1, WEE1, RAD51 and RRM2. KPT-330 and KPT-8602 induce DNA damage, as determined by alkaline comet assay. In addition, we demonstrate that venetoclax enhances KPT-330- and KPT-8602-induced DNA damage, likely through inhibition of DNA damage repair. This study provides new insight into the molecular mechanism underlying the synergistic antileukaemic activity between venetoclax and XPO1 inhibitors against AML. Our data support the clinical evaluation of this promising combination therapy for the treatment of AML.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacologia , Apoptose , Compostos Bicíclicos Heterocíclicos com Pontes , Linhagem Celular Tumoral , Dano ao DNA , Humanos , Carioferinas , Leucemia Mieloide Aguda/genética , Receptores Citoplasmáticos e Nucleares , Sulfonamidas , Proteína Exportina 1
2.
Exp Hematol ; 105: 39-49, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34767916

RESUMO

Acute myeloid leukemia (AML) remains a clinical challenge. Venetoclax is an effective Bcl-2 selective inhibitor approved by the U.S. Food and Drug Administration (FDA) for treatment of AML in patients who are 75 years and older or who have comorbidities. However, resistance to venetoclax limits its clinical efficacy. Mcl-1 has been identified as one determinant of resistance to venetoclax treatment. In this study, we investigate the Mcl-1 inhibitor S63845 in combination with venetoclax in AML cells. We found that S63845 synergizes with venetoclax in AML cell lines and primary patient samples. Bak/Bax double knockdown and treatment with the pan-caspase inhibitor Z-VAD-FMK revealed that the combination induces intrinsic apoptosis in AML cells. Inhibition of Mcl-1 using another Mcl-1 selective inhibitor, AZD5991, also synergistically enhanced apoptosis induced by venetoclax in a caspase-dependent manner. Importantly, S63845 in combination with venetoclax can effectively combat AML cells with acquired resistance to the standard chemotherapy drug cytarabine. In light of these facts, the combined inhibition of Mcl-1 and Bcl-2 shows promise against AML cells, including relapse/refractory AML.


Assuntos
Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Citarabina/farmacologia , Resistencia a Medicamentos Antineoplásicos , Leucemia Mieloide Aguda/tratamento farmacológico , Pirimidinas/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Sinergismo Farmacológico , Humanos , Terapia de Alvo Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores
3.
Front Cardiovasc Med ; 9: 1074257, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36733828

RESUMO

Background/Aims: The effect and underlying mechanism of microgravity on myocardium still poorly understood. The present study aims to reveal the effect and underlying mechanism of tail-suspension-induced microgravity on myocardium of rats. Methods: Tail-suspension was conducted to simulate microgravity in rats. Echocardiography assay was used to detect cardiac function. The cardiac weight index was measured. Hematoxylin and eosin (HE) staining and transmission electron microscopy assay were conducted to observe the structure of the tissues. RNA sequencing and non-targeted metabolomics was employed to obtain transcriptome and metabolic signatures of heart from tail-suspension-induced microgravity and control rats. Results: Microgravity induced myocardial atrophy and decreased cardiac function in rats. Structure and ultrastructure changes were observed in myocardium of rats stimulated with microgravity. RNA sequencing for protein coding genes was performed and identified a total of 605 genes were differentially expressed in myocardium of rats with tail suspension, with 250 upregulated and 355 downregulated (P < 0.05 and | log2fold change| > 1). A total of 55 differentially expressed metabolites were identified between the two groups (VIP > 1 and P < 0.05) by the metabolic profiles of heart tissues from microgravity groups and control. Several major pathways altered aberrantly at both transcriptional and metabolic levels, including FoxO signaling pathway, Amyotrophic lateral sclerosis, Histidine metabolism, Arginine and proline metabolism. Conclusion: Microgravity can induce myocardial atrophy and decreases cardiac function in rats and the molecular alterations at the metabolic and transcriptomic levels was observed, which indicated major altered pathways in rats with tail suspension. The differentially expressed genes and metabolites-involved in the pathways maybe potential biomarkers for microgravity-induced myocardial atrophy.

4.
PLoS One ; 10(3): e0120920, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25799561

RESUMO

PURPOSE: The objective was to investigate autonomic control in groups of European and Chinese astronauts and to identify similarities and differences. METHODS: Beat-to-beat heart rate and finger blood pressure, brachial blood pressure, and respiratory frequency were measured from 10 astronauts (five European taking part in three different space missions and five Chinese astronauts taking part in two different space missions). Data recording was performed in the supine and standing positions at least 10 days before launch, and 1, 3, and 10 days after return. Cross-correlation analysis of heart rate and systolic pressure was used to assess cardiac baroreflex modulation. A fixed breathing protocol was performed to measure respiratory sinus arrhythmia and low-frequency power of systolic blood pressure variability. RESULTS: Although baseline cardiovascular parameters before spaceflight were similar in all astronauts in the supine position, a significant increase in sympathetic activity and a decrease in vagal modulation occurred in the European astronauts when standing; spaceflight resulted in a remarkable vagal decrease in European astronauts only. Similar baseline supine and standing values for heart rate, mean arterial pressure, and respiratory frequency were shown in both groups. Standing autonomic control was based on a balance of higher vagal and sympathetic modulation in European astronauts. CONCLUSION: Post-spaceflight orthostatic tachycardia was observed in all European astronauts, whereas post-spaceflight orthostatic tachycardia was significantly reduced in Chinese astronauts. The basis for orthostatic intolerance is not apparent; however, many possibilities can be considered and need to be further investigated, such as genetic diversities between races, astronaut selection, training, and nutrition, etc.


Assuntos
Povo Asiático , Astronautas , Sistema Nervoso Autônomo/fisiologia , População Branca , Adulto , Sistema Nervoso Autônomo/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Intolerância Ortostática/etiologia , Intolerância Ortostática/fisiopatologia , Voo Espacial , Taquicardia/etiologia , Taquicardia/fisiopatologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA