Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Physiol Plant ; 176(3): e14334, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38705836

RESUMO

European beech is negatively affected by climate change and a further growth decline is predicted for large parts of its distribution range. Despite the importance of this species, little is known about its genetic adaptation and especially the genetic basis of its physiological traits. Here, we used genotyping by sequencing to identify SNPs in 43 German European beech populations growing under different environmental conditions. In total, 28 of these populations were located along a precipitation and temperature gradient in northern Germany, and single tree-based hydraulic and morphological traits were available. We obtained a set of 13,493 high-quality SNPs that were used for environmental and SNP-trait association analysis. In total, 22 SNPs were identified that were significantly associated with environmental variables or specific leaf area (SLA). Several SNPs were located in genes related to stress response. The majority of the significant SNPs were located in non-coding (intergenic and intronic) regions. These may be in linkage disequilibrium with the causative coding or regulatory regions. Our study gives insights into the genetic basis of abiotic adaptation in European beech, and provides genetic resources that can be used in future studies on this species. Besides clear patterns of local adaptation to environmental conditions of the investigated populations, the analyzed morphological and hydraulic traits explained most of the explainable genetic variation. Thus, they could successfully be altered in tree breeding programs, which may help to increase the adaptation of European beech to changing environmental conditions in the future.


Assuntos
Fagus , Estudo de Associação Genômica Ampla , Folhas de Planta , Polimorfismo de Nucleotídeo Único , Fagus/genética , Fagus/fisiologia , Polimorfismo de Nucleotídeo Único/genética , Folhas de Planta/genética , Folhas de Planta/anatomia & histologia , Folhas de Planta/fisiologia , Desequilíbrio de Ligação/genética , Meio Ambiente , Fenótipo , Genótipo , Alemanha
2.
New Phytol ; 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38308133

RESUMO

Scots pine is the foundation species of diverse forested ecosystems across Eurasia and displays remarkable ecological breadth, occurring in environments ranging from temperate rainforests to arid tundra margins. Such expansive distributions can be favored by various demographic and adaptive processes and the interactions between them. To understand the impact of neutral and selective forces on genetic structure in Scots pine, we conducted range-wide population genetic analyses on 2321 trees from 202 populations using genotyping-by-sequencing, reconstructed the recent demography of the species and examined signals of genetic adaptation. We found a high and uniform genetic diversity across the entire range (global FST 0.048), no increased genetic load in expanding populations and minor impact of the last glacial maximum on historical population sizes. Genetic-environmental associations identified only a handful of single-nucleotide polymorphisms significantly linked to environmental gradients. The results suggest that extensive gene flow is predominantly responsible for the observed genetic patterns in Scots pine. The apparent missing signal of genetic adaptation is likely attributed to the intricate genetic architecture controlling adaptation to multi-dimensional environments. The panmixia metapopulation of Scots pine offers a good study system for further exploration into how genetic adaptation and plasticity evolve under gene flow and changing environment.

3.
Plant Biotechnol J ; 22(4): 863-875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37984804

RESUMO

Tree growth performance can be partly explained by genetics, while a large proportion of growth variation is thought to be controlled by environmental factors. However, to what extent DNA methylation, a stable epigenetic modification, contributes to phenotypic plasticity in the growth performance of long-lived trees remains unclear. In this study, a comparative analysis of targeted DNA genotyping, DNA methylation and mRNAseq profiling for needles of 44-year-old Douglas-fir trees (Pseudotsuga menziesii (Mirb.) Franco) having contrasting growth characteristics was performed. In total, we identified 195 differentially expressed genes (DEGs) and 115 differentially methylated loci (DML) that are associated with genes involved in fitness-related processes such as growth, stress management, plant development and energy resources. Interestingly, all four intronic DML were identified in mega-sized (between 100 and 180 kbp in length) and highly expressed genes, suggesting specialized regulation mechanisms of these long intron genes in gymnosperms. DNA repetitive sequences mainly comprising long-terminal repeats of retroelements are involved in growth-associated DNA methylation regulation (both hyper- and hypomethylation) of 99 DML (86.1% of total DML). Furthermore, nearly 14% of the DML was not tagged by single nucleotide polymorphisms, suggesting a unique contribution of the epigenetic variation in tree growth.


Assuntos
Pseudotsuga , Pseudotsuga/genética , Íntrons/genética , Árvores , DNA , Epigênese Genética/genética , Metilação
4.
BMC Microbiol ; 23(1): 350, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37978432

RESUMO

The mycobiome, comprising fungi inhabiting plants, potentially plays a crucial role in tree health and survival amidst environmental stressors like climate change and pathogenic fungi. Understanding the intricate relationships between trees and their microbial communities is essential for developing effective strategies to bolster the resilience and well-being of forest ecosystems as we adopt more sustainable forest management practices. The mycobiome can be considered an integral aspect of a tree's biology, closely linked to its genotype. To explore the influence of host genetics and environmental factors on fungal composition, we examined the mycobiome associated with phloem and roots of Norway spruce (Picea abies (L.) Karst.) cuttings under varying watering conditions. To test the "mycobiome-associated-fitness" hypothesis, we compared seedlings artificially inoculated with Heterobasidion parviporum and control plants to evaluate mycobiome interaction on necrosis development. We aimed to 1) identify specific mycobiome species for the Norway spruce genotypes/families within the phloem and root tissues and their interactions with H. parviporum and 2) assess stability in the mycobiome species composition under abiotic disturbances (reduced water availability). The mycobiome was analyzed by sequencing the ribosomal ITS2 region. Our results revealed significant variations in the diversity and prevalence of the phloem mycobiome among different Norway spruce genotypes, highlighting the considerable impact of genetic variation on the composition and diversity of the phloem mycobiome. Additionally, specific mycobiome genera in the phloem showed variations in response to water availability, indicating the influence of environmental conditions on the relative proportion of certain fungal genera in Norway spruce trees. In the root mycobiome, key fungi such as Phialocephala fortinii and Paraphaeosphaeria neglecta were identified as conferring inhibitory effects against H. parviporum growth in Norway spruce genotypes. Furthermore, certain endophytes demonstrated greater stability in root ecosystems under low water conditions than ectomycorrhizal fungi. This knowledge can contribute to developing sustainable forest management practices that enhance the well-being of trees and their ecosystems, ultimately bolstering forest resilience.


Assuntos
Microbiota , Micobioma , Picea , Humanos , Picea/microbiologia , Secas , Noruega , Microbiota/genética , Árvores/microbiologia , Água
5.
G3 (Bethesda) ; 13(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37708394

RESUMO

Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.


Assuntos
Quercus , Quercus/genética , Filogenia , Haplótipos , Genômica , Cromossomos
6.
Nature ; 618(7964): 316-321, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37225981

RESUMO

In the United Nations Decade on Ecosystem Restoration1, large knowledge gaps persist on how to increase biodiversity and ecosystem functioning in cash crop-dominated tropical landscapes2. Here, we present findings from a large-scale, 5-year ecosystem restoration experiment in an oil palm landscape enriched with 52 tree islands, encompassing assessments of ten indicators of biodiversity and 19 indicators of ecosystem functioning. Overall, indicators of biodiversity and ecosystem functioning, as well as multidiversity and ecosystem multifunctionality, were higher in tree islands compared to conventionally managed oil palm. Larger tree islands led to larger gains in multidiversity through changes in vegetation structure. Furthermore, tree enrichment did not decrease landscape-scale oil palm yield. Our results demonstrate that enriching oil palm-dominated landscapes with tree islands is a promising ecological restoration strategy, yet should not replace the protection of remaining forests.


Assuntos
Biodiversidade , Produtos Agrícolas , Recuperação e Remediação Ambiental , Óleo de Palmeira , Árvores , Florestas , Óleo de Palmeira/provisão & distribuição , Árvores/fisiologia , Agricultura/métodos , Nações Unidas , Clima Tropical , Produtos Agrícolas/provisão & distribuição , Recuperação e Remediação Ambiental/métodos
7.
Ecol Evol ; 13(4): e9935, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37038522

RESUMO

The high diversity and limited floral information in tropical forests often pose a challenge for species identification. However, over the past decade, DNA barcoding has been employed in tropical forests, including Sumatran forests, to enhance floristic surveys. This technique facilitates the discrimination of morphologically similar species and addresses the limitations of conventional species identification, which relies on short-lived reproductive structures. This study aimed to evaluate the efficiency of matK, rbcL, and the combination of both chloroplast markers for species identification in Burseraceae by employing genetic distance and species tree inference. In this study, we collected 197 specimens representing 20 species from five genera of Burseraceae. The highest percentage of specimens' identification (36%) at the species level was obtained using matK + rbcL, followed by matK (31%), and rbcL (7%). The matK dataset presented the highest interspecific divergence with a mean of 0.008. In addition, a lack of barcode gap was observed in both markers, suggesting potential limitations of the core barcodes for distinguishing Sumatran species within Burseraceae. The monophyly test confirmed five species as monophyletic using Bayesian species tree inferences for matK. Overall, our results demonstrate that matK outperforms rbcL in species identification of Burseraceae, whereas their combination did not enhance species delimitation. To improve the molecular species assignments of this family, future studies may consider including more DNA markers in conjuction with matK, and broadening the availability of reference sequences for species that have not yet been included in the databases. The outcomes of molecular species identification vary depending on the taxonomic group under investigation. Implementation of phylogenomics for species delimitation and diagnostic marker development is strongly recommended for tropical biodiversity assessments, especially for poorly studied clades.

8.
Appl Microbiol Biotechnol ; 107(9): 2783-2830, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36988668

RESUMO

Forests provide invaluable economic, ecological, and social services. At the same time, they are exposed to several threats, such as fragmentation, changing climatic conditions, or increasingly destructive pests and pathogens. Trees, the inherent species of forests, cannot be viewed as isolated organisms. Manifold (micro)organisms are associated with trees playing a pivotal role in forest ecosystems. Of these organisms, fungi may have the greatest impact on the life of trees. A multitude of molecular and genetic methods are now available to investigate tree species and their associated organisms. Due to their smaller genome sizes compared to tree species, whole genomes of different fungi are routinely compared. Such studies have only recently started in forest tree species. Here, we summarize the application of molecular and genetic methods in forest conservation genetics, tree breeding, and association genetics as well as for the investigation of fungal communities and their interrelated ecological functions. These techniques provide valuable insights into the molecular basis of adaptive traits, the impacts of forest management, and changing environmental conditions on tree species and fungal communities and can enhance tree-breeding cycles due to reduced time for field testing. It becomes clear that there are multifaceted interactions among microbial species as well as between these organisms and trees. We demonstrate the versatility of the different approaches based on case studies on trees and fungi. KEY POINTS: • Current knowledge of genetic methods applied to forest trees and associated fungi. • Genomic methods are essential in conservation, breeding, management, and research. • Important role of phytobiomes for trees and their ecosystems.


Assuntos
Micobioma , Árvores , Árvores/microbiologia , Ecossistema , Florestas , Fungos/genética
9.
PLoS One ; 17(12): e0277749, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36520800

RESUMO

Molecular biodiversity surveys have been increasingly applied in hyperdiverse tropical regions as an efficient tool for rapid species assessment of partially undiscovered fauna and flora. This is done by overcoming shortfalls in knowledge or availability of reproductive structures during the sampling period, which often represents a bottleneck for accurate specimens' identification. DNA sequencing technology is intensifying species discovery, and in combination with morphological identification, has been filling gaps in taxonomic knowledge and facilitating species inventories of tropical ecosystems. This study aimed to apply morphological taxonomy and DNA barcoding to assess the occurrence of Lamiaceae species in converted land-use systems (old-growth forest, jungle rubber, rubber, and oil palm) in Sumatra, Indonesia. In this species inventory, we detected 89 specimens of Lamiaceae from 18 species distributed in seven subfamilies from the Lamiaceae group. One third of the species identified in this study lacked sequences in the reference database for at least one of the markers used (matK, rbcL, and ITS). The three loci species-tree recovered a total of 12 out of the 18 species as monophyletic lineages and can be employed as a suitable approach for molecular species assignment in Lamiaceae. However, for taxa with a low level of interspecific genetic distance in the barcode regions used in this study, such as Vitex gamosepala Griff. and V. vestita Wall. ex Walp., or Callicarpa pentandra Roxb. and C. candidans (Burm.f.) Hochr., the use of traditional taxonomy remains indispensable. A change in species composition and decline in abundance is associated with an increase in land-use intensification at the family level (i.e., Lamiaceae), and this tendency might be constant across other plant families. For this reason, the maintenance of forest genetic resources needs to be considered for sustainable agricultural production, especially in hyperdiverse tropical regions. Additionally, with this change in species composition, accurate species identification throughout molecular assignments will become more important for conservation planning.


Assuntos
Ecossistema , Lamiaceae , Indonésia , Borracha , Lamiaceae/genética , Árvores/genética , Código de Barras de DNA Taxonômico
10.
Int J Mol Sci ; 23(20)2022 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-36293169

RESUMO

The ecological and economic importance of forest trees is evident and their survival is necessary to provide the raw materials needed for wood and paper industries, to preserve the diversity of associated animal and plant species, to protect water and soil, and to regulate climate. Forest trees are threatened by anthropogenic factors and biotic and abiotic stresses. Various diseases, including those caused by fungal pathogens, are one of the main threats to forest trees that lead to their dieback. Genomics and transcriptomics studies using next-generation sequencing (NGS) methods can help reveal the architecture of resistance to various diseases and exploit natural genetic diversity to select elite genotypes with high resistance to diseases. In the last two decades, QTL mapping studies led to the identification of QTLs related to disease resistance traits and gene families and transcription factors involved in them, including NB-LRR, WRKY, bZIP and MYB. On the other hand, due to the limitation of recombination events in traditional QTL mapping in families derived from bi-parental crosses, genome-wide association studies (GWAS) that are based on linkage disequilibrium (LD) in unstructured populations overcame these limitations and were able to narrow down QTLs to single genes through genotyping of many individuals using high-throughput markers. Association and QTL mapping studies, by identifying markers closely linked to the target trait, are the prerequisite for marker-assisted selection (MAS) and reduce the breeding period in perennial forest trees. The genomic selection (GS) method uses the information on all markers across the whole genome, regardless of their significance for development of a predictive model for the performance of individuals in relation to a specific trait. GS studies also increase gain per unit of time and dramatically increase the speed of breeding programs. This review article is focused on the progress achieved in the field of dissecting forest tree disease resistance architecture through GWAS and QTL mapping studies. Finally, the merit of methods such as GS in accelerating forest tree breeding programs is also discussed.


Assuntos
Resistência à Doença , Árvores , Animais , Resistência à Doença/genética , Árvores/genética , Estudo de Associação Genômica Ampla , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Fenótipo , Florestas , Fatores de Transcrição/genética , Solo , Água
11.
Insects ; 13(8)2022 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-36005305

RESUMO

While the need for biodiversity research is growing, paradoxically, global taxonomical expertise is decreasing as a result of the neglected funding for young academics in taxonomy. Non-destructive approaches for DNA barcoding are necessary for a more efficient use of this dwindling expertise to fill gaps, and identify incorrect entries in sequence databases like BOLD or GenBank. They are efficient because morphological re-examination of species vouchers is still possible post-DNA barcoding. Non-destructive approaches for Diptera with a comprehensive species representation or the consideration of diagnostic fragile morphological characters are missing. Additionally, most non-destructive approaches combine a time intensive and non-destructive digestion step with common DNA extraction methods, such as commercial kits or CTAB DNA isolation. We circumvented those approaches and combined a modified non-destructive TE buffer high-speed DNA extraction, with a PCR inhibitor-resistant PCR reaction system, to a non-destructive DNA barcoding procedure for fresh and frozen samples of the Schizophora (Diptera). This method avoids morphological impairment and the application of harmful chemicals, is cost and time effective, restricts the need for laboratory equipment to a minimum, and prevents cross-contamination risk during DNA isolation. Moreover, the study indicates that the presented non-destructive DNA barcoding procedure is transferable to other soft-bodied insects. We suggest that PCR inhibitor-resistant master mixes enable the development of new-and the modification of existing-non-destructive approaches with the avoidance of further DNA template cleaning.

12.
BMC Ecol Evol ; 22(1): 51, 2022 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-35473550

RESUMO

BACKGROUND: Intense conversion of tropical forests into agricultural systems contributes to habitat loss and the decline of ecosystem functions. Plant-pollinator interactions buffer the process of forest fragmentation, ensuring gene flow across isolated patches of forests by pollen transfer. In this study, we identified the composition of pollen grains stored in pot-pollen of stingless bees, Tetragonula laeviceps, via dual-locus DNA metabarcoding (ITS2 and rbcL) and light microscopy, and compared the taxonomic coverage of pollen sampled in distinct land-use systems categorized in four levels of management intensity (forest, shrub, rubber, and oil palm) for landscape characterization. RESULTS: Plant composition differed significantly between DNA metabarcoding and light microscopy. The overlap in the plant families identified via light microscopy and DNA metabarcoding techniques was low and ranged from 22.6 to 27.8%. Taxonomic assignments showed a dominance of pollen from bee-pollinated plants, including oil-bearing crops such as the introduced species Elaeis guineensis (Arecaceae) as one of the predominant taxa in the pollen samples across all four land-use types. Native plant families Moraceae, Euphorbiaceae, and Cannabaceae appeared in high proportion in the analyzed pollen material. One-way ANOVA (p > 0.05), PERMANOVA (R² values range from 0.14003 to 0.17684, for all tests p-value > 0.5), and NMDS (stress values ranging from 0.1515 to 0.1859) indicated a lack of differentiation between the species composition and diversity of pollen type in the four distinct land-use types, supporting the influx of pollen from adjacent areas. CONCLUSIONS: Stingless bees collected pollen from a variety of agricultural crops, weeds, and wild plants. Plant composition detected at the family level from the pollen samples likely reflects the plant composition at the landscape level rather than the plot level. In our study, the plant diversity in pollen from colonies installed in land-use systems with distinct levels of forest transformation was highly homogeneous, reflecting a large influx of pollen transported by stingless bees through distinct land-use types. Dual-locus approach applied in metabarcoding studies and visual pollen identification showed great differences in the detection of the plant community, therefore a combination of both methods is recommended for performing biodiversity assessments via pollen identification.


Assuntos
Microscopia , Floresta Úmida , Animais , Abelhas/genética , Monitoramento Biológico , Produtos Agrícolas/genética , Código de Barras de DNA Taxonômico , Ecossistema , Indonésia , Pólen/genética
13.
Int J Mol Sci ; 23(2)2022 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-35055150

RESUMO

Due to the economic and ecological importance of forest trees, modern breeding and genetic manipulation of forest trees have become increasingly prevalent. The CRISPR-based technology provides a versatile, powerful, and widely accepted tool for analyzing gene function and precise genetic modification in virtually any species but remains largely unexplored in forest species. Rapidly accumulating genetic and genomic resources for forest trees enabled the identification of numerous genes and biological processes that are associated with important traits such as wood quality, drought, or pest resistance, facilitating the selection of suitable gene editing targets. Here, we introduce and discuss the latest progress, opportunities, and challenges of genome sequencing and editing for improving forest sustainability.


Assuntos
Edição de Genes/métodos , Árvores/crescimento & desenvolvimento , Sequenciamento Completo do Genoma/métodos , Aclimatação , Sistemas CRISPR-Cas , Florestas , Genoma de Planta , Melhoramento Vegetal , Árvores/genética
14.
Environ Monit Assess ; 193(12): 768, 2021 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-34734324

RESUMO

Quercus is one of the important elements of forests worldwide. But the diagnosis of the species in this genus in particular using leaves is pretty challenging due to the presence of natural hybrids and phenotypically plastic trait expression. In this sense, this study aims to classify the leaves of Q. vulcanica and Q. frainetto using convolutional neural networks, VGG16 and VGG19, and Xception deep learning architectures to determine which method has the best performance in species assignment. For this purpose, leaf samples were collected from a total of 300 trees of 6 natural populations using a total of 1459 leaf images, 491 from Q. frainetto and 968 from Q. vulcanica. Before exporting images to the deep learning model, RGB/gray filters are applied and images are optimized with contrast limited adaptive histogram equalization to achieve maximum performance in the deep learning model. Accuracy rates of deep learning architectures varied from 79% (Xception) to 95% (VGG16). The VGG16 deep learning model provided superior performance compared to the others. Developing a mobile device using images from natural populations of many oak species will be beneficial not only for practitioners but also for scientists and local people.


Assuntos
Aprendizado Profundo , Quercus , Monitoramento Ambiental , Florestas , Árvores
15.
Plants (Basel) ; 10(6)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207257

RESUMO

Reforestation efforts are being challenged as water stress is hampering the sapling growth and survival in arid to semiarid regions. A controlled experiment was conducted to evaluate the effect of foliar application of salicylic acid (SA) on water stress tolerance of Conocarpus erectus and Populus deltoides. Saplings were watered at 90%, 60%, and 30% of field capacity (FC), and half of the saplings under 60% and 30% FC were sprayed with 1.0 mM SA. Results indicated that dry weight production decreased significantly in Populus deltoides under both water deficit conditions, and leaf gas exchange parameters decreased significantly in both the species under both soil water deficit conditions. Foliar application of SA resulted in a significant increase in leaf gas exchange parameters, and compatible solutes, thereby increasing the dry weight production in both of the species under soil water deficit. Oxidative stress (hydrogen peroxide and superoxide anions) increased under soil water deficit and decreased after the foliar application of SA and was parallel to the increased antioxidant enzymes activity (superoxide dismutase, catalase, peroxidase, and ascorbate peroxidase). Therefore, it can be concluded that foliar application of 1.0 mM SA can significantly improve the water stress tolerance in both species, however, positive impacts of SA application were higher in Conocarpus erectus due to improved photosynthetic capacity and increased antioxidant enzyme activity.

16.
PeerJ ; 9: e10889, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33828907

RESUMO

The taxonomy and phylogeny of the Betula L. genus remain unresolved and are very difficult to assess due to several factors, especially because of frequent hybridization among different species. In the current study, we used nucleotide sequences of two internal transcribed spacer regions (ITS1 and ITS2), which are commonly used as phylogenetic markers. In addition to their nucleotide variation we reconstructed their secondary structure and used it to resolve phylogenetic relationships of some birch species. We explored whether consideration of secondary structure in phylogenetic analyses based on neighbor-joining, maximum parsimony, maximum likelihood, and Bayesian inference methods would help us obtain more solid support of the reconstructed phylogenetic trees. The results were not unambiguous. There were only a few clades with higher support when secondary structure was included into analysis. The phylogenetic trees generated using different methods were mostly in agreement with each other. However, the resolving power of these markers is still insufficient to reliably discriminate some closely related species. To achieve this aim more reliably there is a need for application of modern genomic approaches in combination with traditional ones.

17.
PLoS One ; 15(12): e0243556, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33306715

RESUMO

Coast redwood (Sequoia sempervirens) naturally growing in southern Oregon and northern California is one of the few conifer tree species that are polyploid. Despite its unique ecological and economic importance, its population genetic structure is still insufficiently studied. To obtain additional data on its population genetic structure we genotyped 317 samples collected from populations in California (data set C) and 144 trees growing in a provenance trial in France (data set F) using 12 nuclear (five random nuclear genomic nSSRs and seven expressed sequence tag EST-SSRs) and six chloroplast (cpSSRs) microsatellite or simple sequence repeat (SSR) markers, respectively. These data sets were also used as reference to infer the origin of 147 coast redwood trees growing in Germany (data set G). Coast redwood was introduced to Europe, including Germany as an ornamental species, decades ago. Due to its fast growth and high timber quality, it could be considered as a potential commercial timber species, especially in perspective to climate warming that makes more regions in Germany suitable for its growing. The well performing trees in colder Germany could be potential frost resistant genotypes, but their genetic properties and origin are mostly unknown. Within the natural range in southern Oregon and northern California, only two relatively weak clusters were identified, one northern and one southern, separated by the San Francisco Bay. High genetic diversity, but low differentiation was found based on the 12 nuclear SSR markers for all three data sets F, C and G. We found that investigated 147 German trees represented only 37 different genotypes. They showed genetic diversity at the level less than diversity observed within the natural range in the northern or southern cluster, but more similar to the diversity observed in the southern cluster. It was difficult to assign German trees to the original single native populations using the six cpSSR markers, but rather to either the northern or southern cluster. The high number of haplotypes found in the data sets based on six cpSSR markers and low genetic differentiation based on 12 nuclear SSRs found in this study helps us study and better understand population genetic structure of this complex polyploid tree and supports the selection of potential genotypes for German forestry.


Assuntos
Cloroplastos/genética , Repetições de Microssatélites/genética , Sequoia/genética , California , Clima , Demografia/métodos , Ecossistema , Etiquetas de Sequências Expressas , Variação Genética/genética , Genética Populacional/métodos , Alemanha , Oregon , Filogenia , Poliploidia , Árvores/genética
18.
Sci Data ; 7(1): 239, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32681057

RESUMO

Coast redwood is a very important endemic conifer timber species in Southern Oregon and Northern California in the USA. Due to its good wood properties and fast growth rate it can be considered as a prospective timber species also in other countries with similar or changing toward similar climatic conditions due to global climate warming, such as Germany. In general, it is frost sensitive and suffers from freezing temperatures. To study genetic mechanisms of frost resistance in this species and to select the most frost tolerant trees we tested 17 clones in climate control chamber experiments and generated two de novo assemblies of the coast redwood transcriptome from a pooled RNA sample using Trinity and CLC Genomic Workbench software, respectively. The hexaploid nature of the coast redwood genome makes it very challenging to successfully assemble and annotate the coast redwood transcriptome. The de novo transcriptome assembly generated by Trinity and CLC considering only reads with a minimum length of 180 bp and contigs no less than 200 bp long resulted in 634,772 and 788,464 unigenes (unique contigs), respectively.


Assuntos
Temperatura Baixa , Sequoia/genética , Transcriptoma , Oregon , Poliploidia , Árvores/genética
19.
Proc Biol Sci ; 287(1926): 20200102, 2020 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-32345167

RESUMO

Effectively conserving biodiversity with limited resources requires scientifically informed and efficient strategies. Guidance is particularly needed on how many living plants are necessary to conserve a threshold level of genetic diversity in ex situ collections. We investigated this question for 11 taxa across five genera. In this first study analysing and optimizing ex situ genetic diversity across multiple genera, we found that the percentage of extant genetic diversity currently conserved varies among taxa from 40% to 95%. Most taxa are well below genetic conservation targets. Resampling datasets showed that ideal collection sizes vary widely even within a genus: one taxon typically required at least 50% more individuals than another (though Quercus was an exception). Still, across taxa, the minimum collection size to achieve genetic conservation goals is within one order of magnitude. Current collections are also suboptimal: they could remain the same size yet capture twice the genetic diversity with an improved sampling design. We term this deficiency the 'genetic conservation gap'. Lastly, we show that minimum collection sizes are influenced by collection priorities regarding the genetic diversity target. In summary, current collections are insufficient (not reaching targets) and suboptimal (not efficiently designed), and we show how improvements can be made.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Espécies em Perigo de Extinção , Animais , Classificação , Plantas , Tamanho da Amostra
20.
RSC Adv ; 10(58): 35131-35135, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35515665

RESUMO

A novel visual detection of Fusarium proliferatum species through recombinase polymerase amplification and rolling circle amplification was established. Single-stranded circle DNA was produced based on one strand of RPA product, which used as a template for rolling circle amplification.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA