Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Neuroimage ; 276: 120213, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37268097

RESUMO

Predictions of task-based functional magnetic resonance imaging (fMRI) from task-free resting-state (rs) fMRI have gained popularity over the past decade. This method holds a great promise for studying individual variability in brain function without the need to perform highly demanding tasks. However, in order to be broadly used, prediction models must prove to generalize beyond the dataset they were trained on. In this work, we test the generalizability of prediction of task-fMRI from rs-fMRI across sites, MRI vendors and age-groups. Moreover, we investigate the data requirements for successful prediction. We use the Human Connectome Project (HCP) dataset to explore how different combinations of training sample sizes and number of fMRI datapoints affect prediction success in various cognitive tasks. We then apply models trained on HCP data to predict brain activations in data from a different site, a different MRI vendor (Phillips vs. Siemens scanners) and a different age group (children from the HCP-development project). We demonstrate that, depending on the task, a training set of approximately 20 participants with 100 fMRI timepoints each yields the largest gain in model performance. Nevertheless, further increasing sample size and number of timepoints results in significantly improved predictions, until reaching approximately 450-600 training participants and 800-1000 timepoints. Overall, the number of fMRI timepoints influences prediction success more than the sample size. We further show that models trained on adequate amounts of data successfully generalize across sites, vendors and age groups and provide predictions that are both accurate and individual-specific. These findings suggest that large-scale publicly available datasets may be utilized to study brain function in smaller, unique samples.


Assuntos
Conectoma , Fenômenos Fisiológicos do Sistema Nervoso , Criança , Humanos , Encéfalo/diagnóstico por imagem , Encéfalo/fisiologia , Conectoma/métodos , Imageamento por Ressonância Magnética/métodos , Tamanho da Amostra
2.
Cereb Cortex ; 33(6): 2669-2681, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35724432

RESUMO

There are numerous commonalities between perceptual and preferential decision processes. For instance, previous studies have shown that both of these decision types are influenced by context. Also, the same computational models can explain both. However, the neural processes and functional connections that underlie these similarities between perceptual and value-based decisions are still unclear. Hence, in the current study, we examine whether perceptual and preferential processes can be explained by similar functional networks utilizing data from the Human Connectome Project. We used resting-state functional magnetic resonance imaging data to predict performance of 2 different decision-making tasks: a value-related task (the delay discounting task) and a perceptual task (the flanker task). We then examined the existence of shared predictive-network features across these 2 decision tasks. Interestingly, we found a significant positive correlation between the functional networks, which predicted the value-based and perceptual tasks. In addition, a larger functional connectivity between visual and frontal decision brain areas was a critical feature in the prediction of both tasks. These results demonstrate that functional connections between perceptual and value-related areas in the brain are inherently related to decision-making processes across domains.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Conectoma/métodos , Cabeça , Rede Nervosa/diagnóstico por imagem
3.
Neuroimage ; 258: 119359, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680054

RESUMO

The search for an 'ideal' approach to investigate the functional connections in the human brain is an ongoing challenge for the neuroscience community. While resting-state functional magnetic resonance imaging (fMRI) has been widely used to study individual functional connectivity patterns, recent work has highlighted the benefits of collecting functional connectivity data while participants are exposed to naturalistic stimuli, such as watching a movie or listening to a story. For example, functional connectivity data collected during movie-watching were shown to predict cognitive and emotional scores more accurately than resting-state-derived functional connectivity. We have previously reported a tight link between resting-state functional connectivity and task-derived neural activity, such that the former successfully predicts the latter. In the current work we use data from the Human Connectome Project to demonstrate that naturalistic-stimulus-derived functional connectivity predicts task-induced brain activation maps more accurately than resting-state-derived functional connectivity. We then show that activation maps predicted using naturalistic stimuli are better predictors of individual intelligence scores than activation maps predicted using resting-state. We additionally examine the influence of naturalistic-stimulus type on prediction accuracy. Our findings emphasize the potential of naturalistic stimuli as a promising alternative to resting-state fMRI for connectome-based predictive modelling of individual brain activity and cognitive traits.


Assuntos
Conectoma , Imageamento por Ressonância Magnética , Encéfalo/fisiologia , Conectoma/métodos , Humanos , Inteligência , Estudos Longitudinais , Imageamento por Ressonância Magnética/métodos , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/fisiologia
4.
Neuroimage ; 249: 118920, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35051583

RESUMO

Relating individual differences in cognitive traits to brain functional organization is a long-lasting challenge for the neuroscience community. Individual intelligence scores were previously predicted from whole-brain connectivity patterns, extracted from functional magnetic resonance imaging (fMRI) data acquired at rest. Recently, it was shown that task-induced brain activation maps outperform these resting-state connectivity patterns in predicting individual intelligence, suggesting that a cognitively demanding environment improves prediction of cognitive abilities. Here, we use data from the Human Connectome Project to predict task-induced brain activation maps from resting-state fMRI, and proceed to use these predicted activity maps to further predict individual differences in a variety of traits. While models based on original task activation maps remain the most accurate, models based on predicted maps significantly outperformed those based on the resting-state connectome. Thus, we provide a promising approach for the evaluation of measures of human behavior from brain activation maps, that could be used without having participants actually perform the tasks.


Assuntos
Encéfalo/fisiologia , Conectoma/métodos , Individualidade , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Análise e Desempenho de Tarefas , Adulto , Encéfalo/diagnóstico por imagem , Humanos
5.
Hum Brain Mapp ; 42(12): 3983-3992, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34021674

RESUMO

What goes wrong in a schizophrenia patient's brain that makes it so different from a healthy brain? In this study, we tested the hypothesis that the abnormal brain activity in schizophrenia is tightly related to alterations in brain connectivity. Using functional magnetic resonance imaging (fMRI), we demonstrated that both resting-state functional connectivity and brain activity during the well-validated N-back task differed significantly between schizophrenia patients and healthy controls. Nevertheless, using a machine-learning approach we were able to use resting-state functional connectivity measures extracted from healthy controls to accurately predict individual variability in the task-evoked brain activation in the schizophrenia patients. The predictions were highly accurate, sensitive, and specific, offering novel insights regarding the strong coupling between brain connectivity and activity in schizophrenia. On a practical perspective, these findings may allow to generate task activity maps for clinical populations without the need to actually perform any tasks, thereby reducing patients inconvenience while saving time and money.


Assuntos
Variação Biológica Individual , Córtex Cerebral/fisiopatologia , Conectoma , Imageamento por Ressonância Magnética , Desempenho Psicomotor/fisiologia , Esquizofrenia/fisiopatologia , Adolescente , Adulto , Córtex Cerebral/diagnóstico por imagem , Conectoma/métodos , Feminino , Humanos , Aprendizado de Máquina , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Esquizofrenia/diagnóstico por imagem , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA