RESUMO
Acidithiobacillus thiooxidans is of paramount importance in the development of biomining technologies. Being widely recognized as an extreme acidophile, extensive research has been dedicated to understanding its significant role in the extraction of several ores in recent years. However, there still exist significant molecular uncertainties surrounding this species. This study focuses on developing a taxonomic assignment method based on the sequencing of the 16S-5S rRNA cluster, along with a qPCR-based technology enabling precise growth determination. Additionally, an approach to understanding its response to acid stress is explored through RT-PCR and MALDI-TOF analysis. Our findings indicate that when subjected to pH levels below 1, the cell inhibits central (carbon fixation and metabolism) and energy (sulfur metabolism) metabolism, as well as chaperone synthesis, suggesting a potential cellular collapse. Nevertheless, the secretion of ammonia is enhanced to raise the environmental pH, while fatty acid synthesis is upregulated to reinforce the cell membrane.
Assuntos
Acidithiobacillus thiooxidans , Adipogenia , Acidithiobacillus thiooxidans/genética , Espanha , Amônia , Membrana Celular , RNA Ribossômico 16SRESUMO
Background: Ovarian cancer (OC) is the deadliest gynecological cancer, often diagnosed at advanced stages. A fast and accurate diagnostic method for early-stage OC is needed. The tumor marker gangliosides, GD2 and GD3, exhibit properties that make them ideal potential diagnostic biomarkers, but they have never before been quantified in OC. We investigated the diagnostic utility of GD2 and GD3 for diagnosis of all subtypes and stages of OC. Methods: This retrospective study evaluated GD2 and GD3 expression in biobanked tissue and serum samples from patients with invasive epithelial OC, healthy donors, non-malignant gynecological conditions, and other cancers. GD2 and GD3 levels were evaluated in tissue samples by immunohistochemistry (n=299) and in two cohorts of serum samples by quantitative ELISA. A discovery cohort (n=379) showed feasibility of GD2 and GD3 quantitative ELISA for diagnosing OC, and a subsequent model cohort (n=200) was used to train and cross-validate a diagnostic model. Results: GD2 and GD3 were expressed in tissues of all OC subtypes and FIGO stages but not in surrounding healthy tissue or other controls. In serum, GD2 and GD3 were elevated in patients with OC. A diagnostic model that included serum levels of GD2+GD3+age was superior to the standard of care (CA125, p<0.001) in diagnosing OC and early-stage (I/II) OC. Conclusion: GD2 and GD3 expression was associated with high rates of selectivity and specificity for OC. A diagnostic model combining GD2 and GD3 quantification in serum had diagnostic power for all subtypes and all stages of OC, including early stage. Further research exploring the utility of GD2 and GD3 for diagnosis of OC is warranted.
RESUMO
The current shortage of pediatric multivisceral donors accounts for the long time and mortality on the waiting list of pediatric patients. The use of donors after cardiac death, especially after the outbreak of normothermic regional perfusion, has increased in recent years for all solid organs except the intestine, mainly because of its higher susceptibility to ischemia-reperfusion injury. We present the first literature case of multivisceral donors after cardiac death transplantation in a 13-month-old recipient from a 2.5-month-old donor. Once exitus was certified, an extracorporeal membrane oxygenation circuit was established, cannulating the aorta and infrarenal vena cava, while the supra-aortic branches were clamped. The abdominal organs completely recovered from ischemia through normothermic regional perfusion (extracorporeal membrane oxygenation initially and beating heart later). After perfusion with the preservation solution, the multivisceral graft was uneventfully implanted. Two months later, the patient was discharged without any complications. This case demonstrates the possibility of reducing the time spent on the waiting list for these patients.
Assuntos
Preservação de Órgãos , Obtenção de Tecidos e Órgãos , Humanos , Criança , Lactente , Preservação de Órgãos/efeitos adversos , Doadores de Tecidos , Morte , Coleta de Tecidos e Órgãos , PerfusãoRESUMO
Pine processionary caterpillar nests are made from raw silk. Fibroin protein is the main component of silk which, in the case of pine processionary caterpillar, has some unusual properties such as a higher resistance to chemical hydrolysis. Isolation of microorganisms naturally present in silk nests led to identification of Bacillus licheniformis and Pseudomonas aeruginosa strains that in a defined minimal medium were able to carry out extensive silk biodegradation. A LasB elastase-like protein from P. aeruginosa was shown to be involved in silk biodegradation. A recombinant form of this protein expressed in Escherichia coli and purified by affinity chromatography was able to efficiently degrade silk in an in vitro assay. However, silk biodegradation by B. licheniformis strain was mediated by a SubC subtilisin-like protease. Homologous expression of a subtilisin Carlsberg encoding gene (subC) allowed faster degradation compared to the biodegradation kinetics of a wildtype B. licheniformis strain. This work led to the identification of new enzymes involved in biodegradation of silk materials, a finding which could lead to possible applications for controlling this pest and perhaps have importance from sanitary and biotechnological points of view.
Assuntos
Bacillus licheniformis , Mariposas , Animais , Seda , Elastase Pancreática , Subtilisinas/genética , Bacillus licheniformis/genéticaRESUMO
Grapevine trunk diseases (GTDs) are one of the most devastating pathologies that threaten the survival and profitability of vineyards around the world. Progressive banning of chemical pesticides and their withdrawal from the market has increased interest in the development of effective biocontrol agents (BCAs) for GTD treatment. In recent years, considerable progress has been made regarding the characterization of the grapevine microbiome, including the aerial part microbiome (flowers, berries and leaves), the wood microbiome, the root environment and vineyard soil microbiomes. In this work, we review these advances especially in relation to the etiology and the understanding of the composition of microbial populations in plants affected by GTDs. We also discuss how the grapevine microbiome is becoming a source for the isolation and characterization of new, more promising BCAs that, in the near future, could become effective tools for controlling these pathologies.
RESUMO
The neurotrophin growth factors bind and activate two types of cell surface receptors: the tropomyosin receptor kinase (Trk) family and p75. TrkA, TrkB, and TrkC are bound preferentially by nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 (NT3), respectively, to activate neuroprotective signals. The p75 receptors are activated by all neurotrophins, and paradoxically in neurodegenerative disease p75 is upregulated and mediates neurotoxic signals. To test neuroprotection strategies, we engineered NT3 to broadly activate Trk receptors (mutant D) or to reduce p75 binding (mutant RK). We also combined these features in a molecule that activates TrkA, TrkB, and TrkC but has reduced p75 binding (mutant DRK). In neurodegenerative disease mouse models in vivo, the DRK protein is a superior therapeutic agent compared with mutant D, mutant RK, and wild-type neurotrophins and protects a broader range of stressed neurons. This work rationalizes a therapeutic strategy based on the biology of each type of receptor, avoiding activation of p75 toxicity while broadly activating neuroprotection in stressed neuronal populations expressing different Trk receptors. SIGNIFICANCE STATEMENT: The neurotrophins nerve growth factor, brain-derived neurotrophic factor, and neurotrophin 3 each can activate a tropomyosin receptor kinase (Trk) A, TrkB, or TrkC receptor, respectively, and all can activate a p75 receptor. Trks and p75 mediate opposite signals. We report the engineering of a protein that activates all Trks, combined with low p75 binding, as an effective therapeutic agent in vivo.
Assuntos
Fatores de Crescimento Neural/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Neuroproteção/fisiologia , Engenharia de Proteínas/métodos , Receptor trkA/metabolismo , Receptores de Fatores de Crescimento/metabolismo , Animais , Axotomia/efeitos adversos , Neuropatias Diabéticas/tratamento farmacológico , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/metabolismo , Relação Dose-Resposta a Droga , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fatores de Crescimento Neural/administração & dosagem , Fatores de Crescimento Neural/genética , Proteínas do Tecido Nervoso/genética , Neuroproteção/efeitos dos fármacos , Nervo Óptico/efeitos dos fármacos , Nervo Óptico/metabolismo , Receptor trkA/genética , Receptores de Fatores de Crescimento/genéticaRESUMO
On average less than 1% of the total phosphorous present in soils is available to plants, making phosphorous one of the most limiting macronutrients for crop productivity worldwide. The aim of this work was to isolate and select phosphate solubilizing bacteria (PSB) from the barley rhizosphere, which has other growth promoting traits and can increase crop productivity. A total of 104 different bacterial isolates were extracted from the barley plant rhizosphere. In this case, 64 strains were able to solubilize phosphate in agar plates. The 24 strains exhibiting the highest solubilizing index belonged to 16 different species, of which 7 isolates were discarded since they were identified as putative phytopathogens. The remaining nine strains were tested for their ability to solubilize phosphate in liquid medium and in pot trials performed in a greenhouse. Several of the isolated strains (Advenella mimigardefordensis, Bacillus cereus, Bacillus megaterium and Burkholderia fungorum) were able to significantly improve levels of assimilated phosphate, dry weight of ears and total starch accumulated on ears compared to non-inoculated plants. Since these strains were able to increase the growth and productivity of barley crops, they could be potentially used as microbial inoculants (biofertilizers).
RESUMO
To review our experience using sirolimus in a single centre paediatric intestinal transplantation cohort. Intestinal transplant patients with more than 3 months follow-up were divided into two groups according to their immunosuppression regimen: tacrolimus, (TAC group, n = 45 grafts) or sirolimus (SRL group, n = 38 grafts), which included those partially or completely converted from tacrolimus to sirolimus. The indications to switch were tacrolimus side effects and immunological complications. Survival and complications were retrospectively analysed comparing both groups. SRL was introduced 9 months (0 months-16.9 years) after transplant. The main cause for conversion was worsening renal function (45%), followed by haemolytic anaemia (21%) and graft-versus-host-disease (16%). Both groups showed a similar overall patient/graft survival (P = 0.76/0.08) and occurrence of rejection (24%/17%, P = 0.36). Immunological complications did not recur after conversion. Renal function significantly improved in most SRL patients. After a median follow-up of 65.17 months, 28/46 survivors were on SRL, 26 with monotherapy, with good graft function. Over one-third of our patients eventually required SRL conversion that allowed to improve their kidney function and immunological events, without entailing additional complications or survival impairment. Further trials are warranted to clarify the potential improvement of the standard tacrolimus maintenance by sirolimus conversion or addition.
Assuntos
Transplante de Rim , Sirolimo , Criança , Rejeição de Enxerto , Humanos , Imunossupressores/uso terapêutico , Ácido Micofenólico , Estudos Retrospectivos , Sirolimo/uso terapêutico , Tacrolimo/uso terapêutico , TransplantadosRESUMO
Melanomas commonly undergo a phenotype switch, from a proliferative to an invasive state. Such tumor cell plasticity contributes to immunotherapy resistance; however, the mechanisms are not completely understood and thus are therapeutically unexploited. Using melanoma mouse models, we demonstrated that blocking the MNK1/2-eIF4E axis inhibited melanoma phenotype switching and sensitized melanoma to anti-PD-1 immunotherapy. We showed that phospho-eIF4E-deficient murine melanomas expressed high levels of melanocytic antigens, with similar results verified in patient melanomas. Mechanistically, we identified phospho-eIF4E-mediated translational control of NGFR, a critical effector of phenotype switching. Genetic ablation of phospho-eIF4E reprogrammed the immunosuppressive microenvironment, exemplified by lowered production of inflammatory factors, decreased PD-L1 expression on dendritic cells and myeloid-derived suppressor cells, and increased CD8+ T cell infiltrates. Finally, dual blockade of the MNK1/2-eIF4E axis and the PD-1/PD-L1 immune checkpoint demonstrated efficacy in multiple melanoma models regardless of their genomic classification. An increase in the presence of intratumoral stem-like TCF1+PD-1+CD8+ T cells, a characteristic essential for durable antitumor immunity, was detected in mice given a MNK1/2 inhibitor and anti-PD-1 therapy. Using MNK1/2 inhibitors to repress phospho-eIF4E thus offers a strategy to inhibit melanoma plasticity and improve response to anti-PD-1 immunotherapy.
Assuntos
Linfócitos T CD8-Positivos/imunologia , Fator de Iniciação 4E em Eucariotos/imunologia , Imunidade Celular , Sistema de Sinalização das MAP Quinases/imunologia , Melanoma Experimental/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Animais , Antígeno B7-H1/genética , Antígeno B7-H1/imunologia , Linhagem Celular Tumoral , Fator de Iniciação 4E em Eucariotos/genética , Imunoterapia , Sistema de Sinalização das MAP Quinases/genética , Melanoma Experimental/genética , Melanoma Experimental/terapia , Camundongos , Camundongos Transgênicos , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/imunologia , Proteínas Serina-Treonina Quinases/genética , Receptor de Fator de Crescimento Neural/genética , Receptor de Fator de Crescimento Neural/imunologiaRESUMO
Events at a receptor ectodomain affect the intracellular domain conformation, activating signal transduction (out-to-in conformational effects). We investigated the reverse direction (in-to-out) where the intracellular domain may impact on ectodomain conformation. The primary sequences of naturally occurring TrkC receptor isoforms (TrkC-FL and TrkC.T1) only differ at the intracellular domain. However, owing to their differential association with Protein Disulfide Isomerase the isoforms have different disulfide bonding and conformations at the ectodomain. Conformations were exploited to develop artificial ligands, mAbs, and small molecules, with isoform-specific binding and biased activation. Consistent, the physiological ligands NT-3 and PTP-sigma bind both isoforms, but NT-3 activates all signaling pathways, whereas PTP-sigma activates biased signals. Our data support an "in-to-out" model controlling receptor ectodomain conformation, a strategy that enables heterogeneity in receptors, ligands, and bioactivity. These concepts may be extended to the many wild-type or oncogenic receptors with known isoforms.
RESUMO
AIMS/HYPOTHESIS: Although 80% of diabetic patients will suffer from voiding difficulties and urinary symptoms, defined as diabetic voiding dysfunction (DVD), therapeutic targets and treatment options are limited. We hypothesise that the blockade of the pro-nerve growth factor (NGF)/p75 neurotrophin receptor (p75NTR) axis by an anti-proNGF monoclonal antibody or by a small molecule p75NTR antagonist (THX-B) can restore bladder remodelling (represented by bladder weight) in an animal model of DVD. Secondary outcomes of the study include improvements in bladder compliance, contractility and morphology, as well as in voiding behaviour, proNGF/NGF balance and TNF-α expression. METHODS: In a streptozotocin-induced mouse model of diabetes, diabetic mice received either a blocking anti-proNGF monoclonal antibody or a p75NTR antagonist small molecule as weekly systemic injections for 4 weeks. Animals were tested at baseline (at 2 weeks of diabetes induction), and after 2 and 4 weeks of treatment. Outcomes measured were voiding function with voiding spot assays and cystometry. Bladders were assessed by histological, contractility and protein expression assays. RESULTS: Diabetic mice showed features of DVD as early as 2 weeks after diabetes diagnosis (baseline) presented by hypertrophy, reduced contractility and abnormal cystometric parameters. Following treatment initiation, a twofold increase (p < 0.05) in untreated diabetic mouse bladder weight and thickness compared with non-diabetic controls was observed, and this change was reversed by p75NTR antagonism (37% reduction in bladder weight compared with untreated diabetic mice [95% CI 14%, 60%]) after 4 weeks of treatment. However, blocking proNGF did not help to reverse bladder hypertrophy. While diabetic mice had significantly worse cystometric parameters and contractile responses than non-diabetic controls, proNGF antagonism normalised bladder compliance (0.007 [Q1-Q3; 0.006-0.009] vs 0.015 [Q1-Q3; 0.014-0.029] ml/cmH2O in untreated diabetic mice, representing 62% reduction [95% CI 8%, 110%], p < 0.05) and contractility to KCl, carbachol and electrical field stimulation (p < 0.05 compared with the diabetic group) after 2 weeks of treatment. These effects were not observed after 4 weeks of treatment with proNGF antagonist. p75NTR antagonism did not show important improvements in cystometric parameters after 2 weeks of treatment. Slightly improved bladder compliance (0.01 [Q1-Q3; 0.009-0.012] vs 0.013 [Q1-Q3; 0.011-0.016] ml/cmH2O for untreated diabetic mice) was seen in the p75NTR antagonist-treated group after 4 weeks of treatment with significantly stabilised contractile responses to KCl, carbachol and electric field stimulation (p < 0.05 for each) compared with diabetic mice. Bladder dysfunction observed in diabetic mice was associated with a significant increase in bladder proNGF/NGF ratio (3.1 [±1.2] vs 0.26 [±0.04] ng/pg in control group, p < 0.05 at week 2 of treatment) and TNF-α (p < 0.05). The proNGF/NGF ratio was partially reduced (about 60% reduction) with both treatments (1.03 [±0.6] ng/pg for proNGF antibody-treated group and 1.4 [±0.76] ng/pg for p75NTR blocker-treated group after 2 weeks of treatment), concomitant with a significant decrease in the bladder levels of TNF-α (p < 0.05), despite persistent hyperglycaemia. CONCLUSIONS/INTERPRETATION: Our findings indicate that blockade of proNGF and the p75NTR receptor in diabetes can impede the development and progression of DVD. The reported improvements in morphological and functional features in our DVD model validates the proNGF/p75NTR axis as a potential therapeutic target in this pathology. Graphical abstract.
Assuntos
Complicações do Diabetes/fisiopatologia , Diabetes Mellitus Experimental/fisiopatologia , Fator de Crescimento Neural/antagonistas & inibidores , Precursores de Proteínas/antagonistas & inibidores , Receptores de Fator de Crescimento Neural/antagonistas & inibidores , Bexiga Urinária/fisiopatologia , Transtornos Urinários/fisiopatologia , Animais , Anticorpos Monoclonais/farmacologia , Complacência (Medida de Distensibilidade) , Complicações do Diabetes/metabolismo , Diabetes Mellitus Experimental/metabolismo , Modelos Animais de Doenças , Camundongos , Contração Muscular , Músculo Liso/fisiopatologia , Tamanho do Órgão , Purinas/farmacologia , Receptor de Fator de Crescimento Neural/antagonistas & inibidores , Bexiga Urinária/efeitos dos fármacos , Bexiga Urinária/metabolismo , Bexiga Urinária/patologia , Transtornos Urinários/metabolismoRESUMO
Intestinal failure (IF) is rare, but it represents one of the most complex medical-surgical management pathologies, both in adults and children. The first-line treatment is parenteral nutrition (PN). However, new alternatives in the field of intestinal rehabilitation have opened up in recent decades, with the rise of multidisciplinary teams and the development of new hormone therapies as the first non-symptomatic approach to IF.
Assuntos
Enteropatias , Adulto , Criança , Humanos , Enteropatias/terapia , Intestinos , Nutrição ParenteralRESUMO
Productivity and economic sustainability of many herbaceous and woody crops are seriously threatened by numerous phytopathogenic fungi. While symptoms associated with phytopathogenic fungal infections of aerial parts (leaves, stems and fruits) are easily observable and therefore recognizable, allowing rapid or preventive action to control this type of infection, the effects produced by soil-borne fungi that infect plants through their root system are more difficult to detect. The fact that these fungi initiate infection and damage underground implies that the first symptoms are not as easily noticeable, and therefore both crop yield and plant survival are frequently severely compromised by the time the infection is found. In this paper we will review and discuss recent insights into plant-microbiota interactions in the root system crucial to understanding the beginning of the infectious process. We will also review different methods for diminishing and controlling the infection rate by phytopathogenic fungi penetrating through the root system including both the traditional use of biocontrol agents such as antifungal compounds as well as some new strategies that could be used because of their effective application, such as nanoparticles, virus-based nanopesticides, or inoculation of plant material with selected endophytes. We will also review the possibility of modeling and influencing the composition of the microbial population in the rhizosphere environment as a strategy for nudging the plant-microbiome interactions toward enhanced beneficial outcomes for the plant, such as controlling the infectious process.
Assuntos
Fungos/patogenicidade , Interações Microbianas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Raízes de Plantas/microbiologia , Antifúngicos/uso terapêutico , Agentes de Controle Biológico/uso terapêutico , Microbiota , Nanopartículas/uso terapêutico , Patologia Vegetal , Rizosfera , Microbiologia do SoloRESUMO
INTRODUCTION: Hirschsprung disease is caused by an impairment in cell migration from the neural crest to the gastrointestinal tract, resulting in an absence of neurons in the myenteric plexus. Many mutations in several genes have been associated to Hirschsprung disease; most of them affecting the RET proto-oncogen pathway. The purpose of this study is the description of novel and known mutations in genes associated to Hirschsprung disease and their prognostic implications. MATERIAL AND METHODS: Retrospective analysis of patients with Hirschsprung disease and positive genetic studies evaluated from 1970 to 2013. RESULTS: We found 21 positive genetic studies in the global series, 17 of them involving the RET proto-oncogene. Two of the mutations are novel and they have not been reported in the medical literature. CONCLUSIONS: The RET protooncogene is the main gene associated with Hirschsprung disease. There are still multiple unknown mutations related to the pathogenesis of the disease. The study of this gene must be part of the work-up of all patients with Hirschsprung disease, as well as their first degree relatives if the mutation is associated with MEN2A and MEN2B syndromes.
Assuntos
Doença de Hirschsprung/genética , Mutação , Proteínas Proto-Oncogênicas c-ret/genética , Feminino , Marcadores Genéticos , Testes Genéticos , Doença de Hirschsprung/diagnóstico , Humanos , Recém-Nascido , Masculino , Prognóstico , Proto-Oncogene Mas , Estudos RetrospectivosRESUMO
INTRODUCTION: Hirschsprung Disease is caused by an impairment in cell migration from the neural crest to the gastrointestinal tract, resulting in an absence of neurons in the myenteric plexus. Many mutations in several genes have been associated to Hirschsprung disease; most of them affecting the RET proto-oncogen pathway. The purpose of this study is the description of novel and known mutations in genes associated to Hirschsprung disease and their prognostic implications. MATERIAL AND METHODS: Retrospective analysis of patients with Hirschsprung disease and positive genetic studies evaluated from 1970 to 2013. RESULTS: We found 21 positive genetic studies in the global series, 17 of them involving the RET proto-oncogene: Two of the mutations are novel and they have not been reported in the medical literature. CONCLUSIONS: The RET protooncogene is the main gene associated with Hirschsprung disease. There are still multiple unknown mutations related to the pathogenesis of the disease. The study of this gene must be part of the work-up of all patients with Hirschsprung disease, as well as their first degree relatives if the mutation is associated with MEN2A and MEN2B syndromes.
Assuntos
Doença de Hirschsprung , Proteínas Proto-Oncogênicas c-ret , Doença de Hirschsprung/genética , Humanos , Neoplasia Endócrina Múltipla Tipo 2a , Mutação , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-ret/genética , Estudos RetrospectivosRESUMO
Many phytopathogenic fungi produce necrosis and ethylene inducing peptide 1 (Nep1-like proteins or NLP) that trigger leaf necrosis and the activation of defense mechanisms. These proteins have been widely studied in plant pathogens as Moniliophthora perniciosa or Botrytis cinerea between others, but little is known about their biological roles in grapevine trunk pathogens. Advances in the sequencing of genomes of several fungi involved in grapevine trunk diseases have revealed that these proteins are present in several copies in their genomes. The aim of this project was to analyze the presence of genes encoding NLP proteins in the Diplodia seriata genome and to characterize their putative role as virulence factors associated to grapevine trunk diseases. In this study, we characterized four NLPs from Diplodia seriata. All proteins showed highly similar amino acid sequences and contained the characteristic peptide motifs of NLPs. DserNEPs slightly reduced the viability of Vitis vinifera L. cell cultures. The cytolytic activity from DserNEP1 was stronger than that from DserNEP2, even at low concentrations. Purified DserNEPs also produced necrosis in leaves when they were inoculated into micropropagules of V. vinifera L. This is the first record of Nep1-like proteins from a fungus associated with grapevine trunk diseases and also from a member of the Botryosphaeriaceae family.
RESUMO
Neurotrophins (NTs) are a subset of the neurotrophic factor family. These growth factors were originally named based on the nerve growth functional assays used to identify them. NTs act as paracrine or autocrine factors for cells expressing NT receptors. The receptors and their function have been studied primarily in cells of the nervous system, but are also present in the cardiovascular, endocrine, and immune systems, as well as in many neoplastic cells. The signals activated by NTs can be varied, depending on cellular stage and context, healthy or disease states, and depending on whether the specific NTs and their receptors are expressed in the relevant cells. In the healthy central and peripheral adult nervous systems, NTs drive neuronal survival, phenotype, synaptic maintenance, and function. Deficiencies of the NT/NT receptor axis are causally associated with disease onset or disease progression. Paradoxically, NTs can also drive synaptic loss and neuronal death. In the embryonic stage this activity is essential for proper developmental pruning of the nervous system, but in the adult it can be associated with neurodegenerative disease. Given their key role in neuronal survival and death, NTs and NT receptors have long been considered therapeutic targets to achieve neuroprotection. The first neuroprotective approaches consisted of enhancing neuronal survival signals using NTs. Later strategies selectively targeted receptors to induce survival signals specifically, while avoiding activation of death signals. Recently, the concept of selectively targeting receptors to reduce neuronal death signals has emerged. Here, we review the rationale of each neuroprotective strategy with respect to the complex cell biology and pharmacology of each target receptor.
RESUMO
BACKGROUND: The study of brain energy metabolism (BEM) markers in the cerebrospinal fluid (CSF) is a potential diagnostic and prognostic tool for many central nervous system (CNS) diseases. To date, in veterinary medicine, few studies are reporting physiologic ranges for some BEM markers. Recently, the influence of anesthetic drugs on BEM markers has been described in mice; subsequently, the study of CSF-BEM markers has gained increasing attention. OBJECTIVES: The effects of anesthetic agents on BEM are poorly understood in dogs. The aim of this study was to evaluate the influence of propofol, isoflurane, and the duration of anesthesia on CSF-BEM markers in dogs. METHODS: Nine dogs were anesthetized at two different periods, one month apart. In the first period, the dogs were intravenously anesthetized with propofol (PRO-group), and in the second period, the dogs received inhalant anesthesia with isoflurane (ISO-group). In both cases, CSF and blood were collected 15 minutes (T0) and 3 hours after induction (T3) and analyzed for lactate, pyruvate, glucose, creatine kinase, glutamate, and electrolyte concentrations. RESULTS: CSF lactate (CSF-L) showed variation depending on the anesthetic agent and time, being significantly lower after 3 hours of anesthesia in the PRO-group and showing a trend to increase over time in the ISO-group. No changes were detected over time or between groups in CSF glutamate, glucose, or electrolytes. CONCLUSIONS: The results of this study support that the anesthetic drug choice and length of the general anesthesia should be considered when CSF-L analyses are interpreted in dogs.
Assuntos
Anestésicos/farmacologia , Biomarcadores/líquido cefalorraquidiano , Cães/fisiologia , Metabolismo Energético/efeitos dos fármacos , Isoflurano/farmacologia , Propofol/farmacologia , Anestesia/veterinária , Animais , Feminino , Ácido Láctico/líquido cefalorraquidiano , Masculino , Estudos ProspectivosRESUMO
Immune targeting of (glyco)protein tumor markers has been useful to develop cancer and virus vaccines. However, the ganglioside family of tumor-associated glycolipids remains intractable to vaccine approaches. Here we show that synthetic antigens mimicking the carbohydrate moiety of GD2 or GD3 gangliosides can be used as vaccines to activate a selective humoral and cellular immunity that is therapeutic against several cancers expressing GD2 or GD3. Adoptive transfer of T cells generated after vaccination elicits tumor-infiltrating lymphocytes of the γδ T cell receptor and CD8+ phenotypes; and affords a high therapeutic index. The glycomimetic vaccine principles can be expanded to target the family of tumor gangliosides and other carbohydrates expressed primarily in pathological states.