Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(9): e1010412, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36067227

RESUMO

The self-organising global dynamics underlying brain states emerge from complex recursive nonlinear interactions between interconnected brain regions. Until now, most efforts of capturing the causal mechanistic generating principles have supposed underlying stationarity, being unable to describe the non-stationarity of brain dynamics, i.e. time-dependent changes. Here, we present a novel framework able to characterise brain states with high specificity, precisely by modelling the time-dependent dynamics. Through describing a topological structure associated to the brain state at each moment in time (its attractor or 'information structure'), we are able to classify different brain states by using the statistics across time of these structures hitherto hidden in the neuroimaging dynamics. Proving the strong potential of this framework, we were able to classify resting-state BOLD fMRI signals from two classes of post-comatose patients (minimally conscious state and unresponsive wakefulness syndrome) compared with healthy controls with very high precision.


Assuntos
Encéfalo , Estado Vegetativo Persistente , Encéfalo/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Vigília
2.
PLoS Comput Biol ; 14(9): e1006154, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30212467

RESUMO

Integrated Information Theory (IIT) has become nowadays the most sensible general theory of consciousness. In addition to very important statements, it opens the door for an abstract (mathematical) formulation of the theory. Given a mechanism in a particular state, IIT identifies a conscious experience with a conceptual structure, an informational object which exists, is composed of identified parts, is informative, integrated and maximally irreducible. This paper introduces a space-time continuous version of the concept of integrated information. To this aim, a graph and a dynamical systems treatment is used to define, for a given mechanism in a state for which a dynamics is settled, an Informational Structure, which is associated to the global attractor at each time of the system. By definition, the informational structure determines all the past and future behavior of the system, possesses an informational nature and, moreover, enriches all the points of the phase space with cause-effect power by means of its associated Informational Field. A detailed description of its inner structure by invariants and connections between them allows to associate a transition probability matrix to each informational structure and to develop a measure for the level of integrated information of the system.


Assuntos
Encéfalo/fisiologia , Estado de Consciência , Teoria da Informação , Algoritmos , Animais , Humanos , Modelos Neurológicos , Modelos Teóricos , Dinâmica não Linear
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA