Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Int J Mol Sci ; 24(15)2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37569674

RESUMO

Myocardial infarction (MI) causes massive loss of cardiac myocytes and injury to the coronary microcirculation, overwhelming the limited capacity of cardiac regeneration. Cardiac repair after MI is finely organized by complex series of procedures involving a robust angiogenic response that begins in the peri-infarcted border area of the infarcted heart, concluding with fibroblast proliferation and scar formation. Efficient neovascularization after MI limits hypertrophied myocytes and scar extent by the reduction in collagen deposition and sustains the improvement in cardiac function. Compelling evidence from animal models and classical in vitro angiogenic approaches demonstrate that a plethora of well-orchestrated signaling pathways involving Notch, Wnt, PI3K, and the modulation of intracellular Ca2+ concentration through ion channels, regulate angiogenesis from existing endothelial cells (ECs) and endothelial progenitor cells (EPCs) in the infarcted heart. Moreover, cardiac repair after MI involves cell-to-cell communication by paracrine/autocrine signals, mainly through the delivery of extracellular vesicles hosting pro-angiogenic proteins and non-coding RNAs, as microRNAs (miRNAs). This review highlights some general insights into signaling pathways activated under MI, focusing on the role of Ca2+ influx, Notch activated pathway, and miRNAs in EC activation and angiogenesis after MI.


Assuntos
Células Progenitoras Endoteliais , MicroRNAs , Infarto do Miocárdio , Animais , Cicatriz/patologia , Neovascularização Fisiológica/fisiologia , Infarto do Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Células Progenitoras Endoteliais/metabolismo
2.
Front Immunol ; 14: 1278630, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38250065

RESUMO

The overexpression of the immunoinhibitory receptor programmed death-1 (PD1) on T-cells is involved in immune evasion in cancer. The use of anti-PD-1/PDL-1 strategy has deeply changed the therapies of cancers and patient survival. However, their efficacy diverges greatly along with tumor type and patient populations. Thereby, novel treatments are needed to interfere with the anti-tumoral immune responses and propose an adjunct therapy. In the current study, we found that the antifungal drug Sulconazole (SCZ) inhibits PD-1 expression on activated PBMCs and T cells at the RNA and protein levels. SCZ repressed NF-κB and calcium signaling, both, involved in the induction of PD-1. Further analysis revealed cancer cells treatment with SCZ inhibited their proliferation, and migration and ability to mediate tumor growth in zebrafish embryos. SCZ found also to inhibit calcium mobilization in cancer cells. These results suggest the SCZ therapeutic potential used alone or as adjunct strategy to prevent T-cell exhaustion and promotes cancer cell malignant phenotype repression in order to improve tumor eradication.


Assuntos
Imidazóis , NF-kappa B , Neoplasias , Humanos , Animais , Cálcio , Receptor de Morte Celular Programada 1 , Peixe-Zebra , Sinalização do Cálcio , Neoplasias/tratamento farmacológico
3.
Front Cardiovasc Med ; 9: 777717, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35402537

RESUMO

Background: Primary percutaneous coronary intervention (PPCI) in patients with ST-segment elevation myocardial infarction (STEMI) improves the survival of patients; nevertheless, some patients develop left ventricular adverse remodeling (LVAR) a few months after the intervention. The main objective of this study was to characterize the role of pro-inflammatory cell populations, related cytokines, and microRNAs (miRNAs) released after PPCI as reliable prognostic biomarkers for LVAR in patients with STEMI. Methods: We evaluated the level of pro-inflammatory subsets, before and after revascularization, 1 and 6 months after PPCI, using flow cytometry. We also performed a miRNA microarray in isolated peripheral blood mononuclear cells (PBMCs) and examined the levels of 27 cytokines in patients' serum of patients by multiplex ELISA. Results: We observed that the levels of classical and intermediate monocytes increased 6 h after PPCI in patients who developed LVAR later. Multivariate regression analysis and ROC curves indicated that intermediate monocytes, after PPCI, were the best monocyte subset that correlated with LVAR. Within the 27 evaluated cytokines evaluated, we found that the increase in the level of vascular endothelial growth factor (VEGF) correlated with LVAR. Furthermore, the microarray analysis of PBMCs determined that up to 1,209 miRNAs were differentially expressed 6 h after PPCI in LVAR patients, compared with those who did not develop LVAR. Using RT-qPCR we confirmed a significant increase in miR-16, miR-21-5p, and miR-29a-3p, suggested to modulate the expression of different cytokines, 6 h post-PPCI in LVAR patients. Interestingly, we determined that the combined analysis of the levels of the intermediate monocyte subpopulation, VEGF, and miRNAs gave a better association with LVAR appearance. Similarly, combined ROC analysis provided high accurate specificity and sensibility to identify STEMI patients who will develop LVAR. Conclusion: Our data suggest that the combined analysis of intermediate monocytes, VEGF, and miRNAs predicts LVAR in STEMI patients.

4.
Mol Ther Nucleic Acids ; 27: 838-853, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35141045

RESUMO

Urocortin-2 (Ucn-2) has demonstrated cardioprotective actions against myocardial ischemia-reperfusion (I/R) injuries. Herein, we explored the protective role of Ucn-2 through microRNAs (miRNAs) post-transcriptional regulation of apoptotic and pro-fibrotic genes. We determined that the intravenous administration of Ucn-2 before heart reperfusion in a Wistar rat model of I/R recovered cardiac contractility and decreased fibrosis, lactate dehydrogenase release, and apoptosis. The infusion of Ucn-2 also inhibited the upregulation of 6 miRNAs in revascularized heart. The in silico analysis indicated that miR-29a and miR-451_1∗ are predicted to target many apoptotic and fibrotic genes. Accordingly, the transfection of neonatal rat ventricular myocytes with mimics overexpressing miR-29a, but not miR-451_1∗, prevented I/R-induced expression of pro- and anti-apoptotic genes such as Apaf-1, Hmox-1, and Cycs, as well as pro-fibrotic genes Col-I and Col-III. We also confirmed that Hmox-1, target of miR-29a, is highly expressed at the mRNA and protein levels in adult rat heart under I/R, whereas, Ucn-2 abolished I/R-induced mRNA and protein upregulation of HMOX-1. Interestingly, a significant upregulation of Hmox-1 was observed in the ventricle of ischemic patients with heart failure, correlating negatively with the left ventricle ejection fraction. Altogether, these data indicate that Ucn-2, through miR-29a regulation, provides long-lasting cardioprotection, involving the post-transcriptional regulation of apoptotic and fibrotic genes.

6.
Front Cell Dev Biol ; 9: 639952, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33748129

RESUMO

Angiogenesis is a multistep process that controls endothelial cells (ECs) functioning to form new blood vessels from preexisting vascular beds. This process is tightly regulated by pro-angiogenic factors, such as vascular endothelial growth factor (VEGF), which promote signaling pathways involving the increase in the intracellular Ca2+ concentration ([Ca2+]i). Recent evidence suggests that store-operated calcium entry (SOCE) might play a role in angiogenesis. However, little is known regarding the role of SARAF, SOCE-associated regulatory factor, and Orai1, the pore-forming subunit of the store-operated calcium channel (SOCC), in angiogenesis. Here, we show that SOCE inhibition with GSK-7975A blocks aorta sprouting, as well as human umbilical vein endothelial cell (HUVEC) tube formation and migration. The intraperitoneal injection of GSK-7975A also delays the development of retinal vasculature assessed at postnatal day 6 in mice, since it reduces vessel length and the number of junctions, while it increases lacunarity. Moreover, we find that SARAF and Orai1 are involved in VEGF-mediated [Ca2+]i increase, and their knockdown using siRNA impairs HUVEC tube formation, proliferation, and migration. Finally, immunostaining and in situ proximity ligation assays indicate that SARAF likely interacts with Orai1 in HUVECs. Therefore, these findings show for the first time a functional interaction between SARAF and Orai1 in ECs and highlight their essential role in different steps of the angiogenesis process.

7.
Int J Mol Sci ; 21(17)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854408

RESUMO

Transient receptor potentials (TRPs) are non-selective cation channels that are widely expressed in vascular beds. They contribute to the Ca2+ influx evoked by a wide spectrum of chemical and physical stimuli, both in endothelial and vascular smooth muscle cells. Within the superfamily of TRP channels, different isoforms of TRPC (canonical) and TRPV (vanilloid) have emerged as important regulators of vascular tone and blood flow pressure. Additionally, several lines of evidence derived from animal models, and even from human subjects, highlighted the role of TRPC and TRPV in vascular remodeling and disease. Dysregulation in the function and/or expression of TRPC and TRPV isoforms likely regulates vascular smooth muscle cells switching from a contractile to a synthetic phenotype. This process contributes to the development and progression of vascular disorders, such as systemic and pulmonary arterial hypertension, atherosclerosis and restenosis. In this review, we provide an overview of the current knowledge on the implication of TRPC and TRPV in the physiological and pathological processes of some frequent vascular diseases.


Assuntos
Canais de Cátion TRPC/metabolismo , Canais de Cátion TRPV/metabolismo , Doenças Vasculares/metabolismo , Remodelação Vascular/genética , Animais , Progressão da Doença , Regulação da Expressão Gênica , Humanos , Canais de Cátion TRPC/genética , Canais de Cátion TRPV/genética , Doenças Vasculares/genética
8.
Adv Exp Med Biol ; 1229: 259-271, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32285417

RESUMO

The Ischemic Heart Disease (IHD) is considered a clinical condition characterized by myocardial ischemia causing an imbalance between myocardial blood supply and demand, leading to morbidity and mortality across the worldwide. Prompt diagnostic and prognostic represents key factors for the treatment and reduction of the mortality rate. Therefore, one of the newest frontiers in cardiovascular research is related to non-coding RNAs (ncRNAs), which prompted a huge interest in exploring ncRNAs candidates for utilization as potential therapeutic targets for diagnostic and prognostic and/or biomarkers in IHD. However, there are undoubtedly many more functional ncRNAs yet to be discovered and characterized. Here we will discuss our current knowledge and we will provide insight on the roles and effects elicited by some ncRNAs related to IHD.


Assuntos
Isquemia Miocárdica , RNA não Traduzido , Biomarcadores , Humanos , Miocárdio/patologia
9.
J Clin Med ; 9(4)2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32276307

RESUMO

Restoration of epicardial coronary blood flow, achieved by early reperfusion with primary percutaneous coronary intervention (PPCI), is the guideline recommended to treat patients with ST-segment-elevation myocardial infarction (STEMI). However, despite successful blood restoration, increasing numbers of patients develop left ventricular adverse remodelling (LVAR) and heart failure. Therefore, reliable prognostic biomarkers for LVAR in STEMI are urgently needed. Our aim was to investigate the role of circulating microRNAs (miRNAs) and their association with LVAR in STEMI patients following the PPCI procedure. We analysed the expression of circulating miRNAs in blood samples of 56 patients collected at admission and after revascularization (at 3, 6, 12 and 24 h). The associations between miRNAs and left ventricular end diastolic volumes at 6 months were estimated to detect LVAR. miRNAs were also analysed in samples isolated from peripheral blood mononuclear cells (PBMCs) and human myocardium of failing hearts. Kinetic analysis of miRNAs showed a fast time-dependent increase in miR-133a, miR-133b, miR-193b, miR-499, and miR-320a in STEMI patients compared to controls. Moreover, the expression of miR-29a, miR-29b, miR-324, miR-208, miR-423, miR-522, and miR-545 was differentially expressed even before PPCI in STEMI. Furthermore, the increase in circulating miR-320a and the decrease in its expression in PBMCs were significantly associated with LVAR and correlated with the expression of miR-320a in human failing myocardium from ischaemic origin. In conclusion, we determined the time course expression of new circulating miRNAs in patients with STEMI treated with PPCI and we showed that miR-320a was positively associated with LVAR.

10.
Cells ; 9(1)2020 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-31936700

RESUMO

Transient receptor potential canonical (TRPC) channels are ubiquitously expressed in excitable and non-excitable cardiac cells where they sense and respond to a wide variety of physical and chemical stimuli. As other TRP channels, TRPC channels may form homo or heterotetrameric ion channels, and they can associate with other membrane receptors and ion channels to regulate intracellular calcium concentration. Dysfunctions of TRPC channels are involved in many types of cardiovascular diseases. Significant increase in the expression of different TRPC isoforms was observed in different animal models of heart infarcts and in vitro experimental models of ischemia and reperfusion. TRPC channel-mediated increase of the intracellular Ca2+ concentration seems to be required for the activation of the signaling pathway that plays minor roles in the healthy heart, but they are more relevant for cardiac responses to ischemia, such as the activation of different factors of transcription and cardiac hypertrophy, fibrosis, and angiogenesis. In this review, we highlight the current knowledge regarding TRPC implication in different cellular processes related to ischemia and reperfusion and to heart infarction.


Assuntos
Cálcio/metabolismo , Isquemia Miocárdica/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo , Animais , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/patologia , Humanos , Modelos Biológicos , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia
11.
Adv Exp Med Biol ; 1131: 489-504, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31646522

RESUMO

Store-Operated Ca2+ Entry (SOCE) is an important Ca2+ influx pathway expressed by several excitable and non-excitable cell types. SOCE is recognized as relevant signaling pathway not only for physiological process, but also for its involvement in different pathologies. In fact, independent studies demonstrated the implication of essential protein regulating SOCE, such as STIM, Orai and TRPCs, in different pathogenesis and cell disorders, including cardiovascular disease, muscular dystrophies and angiogenesis. Compelling evidence showed that dysregulation in the function and/or expression of isoforms of STIM, Orai or TRPC play pivotal roles in cardiac hypertrophy and heart failure, vascular remodeling and hypertension, skeletal myopathies, and angiogenesis. In this chapter, we summarized the current knowledge concerning the mechanisms underlying abnormal SOCE and its involvement in some diseases, as well as, we discussed the significance of STIM, Orai and TRPC isoforms as possible therapeutic targets for the treatment of angiogenesis, cardiovascular and skeletal muscle diseases.


Assuntos
Cálcio , Doenças Cardiovasculares , Doenças Musculares , Neovascularização Patológica , Cálcio/metabolismo , Canais de Cálcio , Sinalização do Cálcio , Doenças Cardiovasculares/fisiopatologia , Humanos , Transporte de Íons , Doenças Musculares/fisiopatologia , Neovascularização Patológica/fisiopatologia
12.
Front Physiol ; 10: 159, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30881310

RESUMO

Calcium is an important second messenger required not only for the excitation-contraction coupling of the heart but also critical for the activation of cell signaling pathways involved in the adverse cardiac remodeling and consequently for the heart failure. Sustained neurohumoral activation, pressure-overload, or myocardial injury can cause pathologic hypertrophic growth of the heart followed by interstitial fibrosis. The consequent heart's structural and molecular adaptation might elevate the risk of developing heart failure and malignant arrhythmia. Compelling evidences have demonstrated that Ca2+ entry through TRP channels might play pivotal roles in cardiac function and pathology. TRP proteins are classified into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPM (melastatin), TRPA (ankyrin), TRPML (mucolipin), and TRPP (polycystin), which are activated by numerous physical and/or chemical stimuli. TRP channels participate to the handling of the intracellular Ca2+ concentration in cardiac myocytes and are mediators of different cardiovascular alterations. This review provides an overview of the current knowledge of TRP proteins implication in the pathologic process of some frequent cardiac diseases associated with the adverse cardiac remodeling such as cardiac hypertrophy, fibrosis, and conduction alteration.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA