Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS One ; 10(7): e0133038, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26186700

RESUMO

Tudor staphylococcal nuclease (Tudor-SN) and Argonaute (Ago) are conserved components of the basic RNA interference (RNAi) machinery with a variety of functions including immune response and gene regulation. The RNAi machinery has been characterized in tick vectors of human and animal diseases but information is not available on the role of Tudor-SN in tick RNAi and other cellular processes. Our hypothesis is that tick Tudor-SN is part of the RNAi machinery and may be involved in innate immune response and other cellular processes. To address this hypothesis, Ixodes scapularis and I. ricinus ticks and/or cell lines were used to annotate and characterize the role of Tudor-SN in dsRNA-mediated RNAi, immune response to infection with the rickettsia Anaplasma phagocytophilum and the flaviviruses TBEV or LGTV and tick feeding. The results showed that Tudor-SN is conserved in ticks and involved in dsRNA-mediated RNAi and tick feeding but not in defense against infection with the examined viral and rickettsial pathogens. The effect of Tudor-SN gene knockdown on tick feeding could be due to down-regulation of genes that are required for protein processing and blood digestion through a mechanism that may involve selective degradation of dsRNAs enriched in G:U pairs that form as a result of adenosine-to-inosine RNA editing. These results demonstrated that Tudor-SN plays a role in tick RNAi pathway and feeding but no strong evidence for a role in innate immune responses to pathogen infection was found.


Assuntos
Anaplasma phagocytophilum/patogenicidade , Flavivirus/patogenicidade , Ixodes/genética , Proteínas Nucleares/genética , Interferência de RNA , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Cricetinae , Ixodes/parasitologia , Ixodes/virologia , Dados de Sequência Molecular , Proteínas Nucleares/metabolismo , Filogenia , Transcriptoma
2.
PLoS Genet ; 11(3): e1005120, 2015 03.
Artigo em Inglês | MEDLINE | ID: mdl-25815810

RESUMO

Anaplasma phagocytophilum is an emerging pathogen that causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects cell function in both vertebrate host and the tick vector, Ixodes scapularis. Global tissue-specific response and apoptosis signaling pathways were characterized in I. scapularis nymphs and adult female midguts and salivary glands infected with A. phagocytophilum using a systems biology approach combining transcriptomics and proteomics. Apoptosis was selected for pathway-focused analysis due to its role in bacterial infection of tick cells. The results showed tissue-specific differences in tick response to infection and revealed differentiated regulation of apoptosis pathways. The impact of bacterial infection was more pronounced in tick nymphs and midguts than in salivary glands, probably reflecting bacterial developmental cycle. All apoptosis pathways described in other organisms were identified in I. scapularis, except for the absence of the Perforin ortholog. Functional characterization using RNA interference showed that Porin knockdown significantly increases tick colonization by A. phagocytophilum. Infection with A. phagocytophilum produced complex tissue-specific alterations in transcript and protein levels. In tick nymphs, the results suggested a possible effect of bacterial infection on the inhibition of tick immune response. In tick midguts, the results suggested that A. phagocytophilum infection inhibited cell apoptosis to facilitate and establish infection through up-regulation of the JAK/STAT pathway. Bacterial infection inhibited the intrinsic apoptosis pathway in tick salivary glands by down-regulating Porin expression that resulted in the inhibition of Cytochrome c release as the anti-apoptotic mechanism to facilitate bacterial infection. However, tick salivary glands may promote apoptosis to limit bacterial infection through induction of the extrinsic apoptosis pathway. These dynamic changes in response to A. phagocytophilum in I. scapularis tissue-specific transcriptome and proteome demonstrated the complexity of the tick response to infection and will contribute to characterize gene regulation in ticks.


Assuntos
Anaplasma phagocytophilum/genética , Anaplasmose/genética , Apoptose/genética , Biologia de Sistemas , Anaplasma phagocytophilum/patogenicidade , Anaplasmose/microbiologia , Anaplasmose/transmissão , Animais , Diferenciação Celular/genética , Feminino , Regulação da Expressão Gênica , Humanos , Insetos Vetores/genética , Insetos Vetores/microbiologia , Ixodes/microbiologia , Especificidade de Órgãos , Interferência de RNA , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia , Transdução de Sinais/genética , Transcriptoma/genética
3.
Vet Parasitol ; 208(1-2): 26-9, 2015 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-25555312

RESUMO

Diseases transmitted by arthropod vectors such as ticks greatly impact human and animal health. In particular, many diseases of dogs and cats are potentially transmissible to people by arthropod vectors and therefore their control is important for the eradication of vector-borne diseases (VBD). Vaccination is an environmentally friendly alternative for vector control that allows control of several VBD by targeting their common vector. Recent results have shown that it is possible to use vector protective antigens for the control of arthropod vector infestations and pathogen infection. However, as reviewed in this paper, very little progress has been made for the control of ectoparasite infestations and VBD in pets using vaccination with vector protective antigens. The growing interaction between pets and people underlines the importance of developing new interventions for the monitoring and control of VBD.


Assuntos
Infestações por Carrapato/prevenção & controle , Doenças Transmitidas por Carrapatos/prevenção & controle , Carrapatos/imunologia , Vacinação , Animais , Proteínas de Artrópodes/imunologia , Humanos
4.
Ticks Tick Borne Dis ; 5(6): 744-52, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25127160

RESUMO

Anaplasma phagocytophilum, transmitted by ticks of the genus Ixodes, was first described in Scotland as the agent of tick-borne fever in sheep and more recently as the cause of human granulocytic anaplasmosis in the U.S. and Europe. We previously reported sheep as an experimental host for the human NY-18 isolate of A. phagocytophilum. While clinical signs were not observed and infected granulocytes were not seen in stained blood smears, these sheep served as a good host for infection of ticks. In this research we characterized tick feeding sites to better understand tick/host/pathogen interactions. Ixodes scapularis adults were allowed to feed for 2 and 4 days on experimentally infected sheep, after which biopsies were taken beneath tick feeding sites for histopathology, PCR and immunohistochemistry (IHC) studies. In addition, the expression of selected immune response genes was studied in blood and feeding site biopsies. While necrosis was too advanced in 4-day biopsies for accurate cell counts, higher numbers of eosinophils and neutrophils were found in 2-day biopsies from infected sheep as compared with the uninfected controls. An unexpected result was the documentation of higher dermal inflammation in infected sheep at sites without ticks. A. phagocytophilum infected granulocytes were localized by immunohistochemistry (IHC) in skin biopsies using rabbit antibodies against the recombinant A. phagocytophilum major surface protein 4 as the primary antibody for indirect peroxidase-anti-peroxidase and fluorescent antibody IHC. These infected cells are likely to be the source of infection for ticks. Sheep therefore served as good hosts for studying host/pathogen/tick interactions of this human strain of A. phagocytophilum, and provided a means of producing infected ticks for future studies on tick/pathogen developmental and transmission cycles.


Assuntos
Anaplasma phagocytophilum/fisiologia , Anaplasmose/transmissão , Ehrlichiose/transmissão , Interações Hospedeiro-Patógeno , Ixodes/microbiologia , Doenças dos Ovinos/transmissão , Anaplasmose/microbiologia , Animais , Ehrlichiose/microbiologia , Feminino , Humanos , Masculino , Modelos Animais , Ovinos , Doenças dos Ovinos/microbiologia , Zoonoses
5.
PLoS Negl Trop Dis ; 8(7): e2993, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25057911

RESUMO

Ixodes ricinus is the most widespread and abundant tick in Europe, frequently bites humans, and is the vector of several pathogens including those responsible for Lyme disease, Tick-Borne Encephalitis, anaplasmosis, babesiosis and bartonellosis. These tick-borne pathogens are transmitted to vertebrate hosts via tick saliva during blood feeding, and tick salivary gland (SG) factors are likely implicated in transmission. In order to identify such tick factors, we characterized the transcriptome of female I. ricinus SGs using next generation sequencing techniques, and compared transcriptomes between Bartonella henselae-infected and non-infected ticks. High-throughput sequencing of I. ricinus SG transcriptomes led to the generation of 24,539 isotigs. Among them, 829 and 517 transcripts were either significantly up- or down-regulated respectively, in response to bacterial infection. Searches based on sequence identity showed that among the differentially expressed transcripts, 161 transcripts corresponded to nine groups of previously annotated tick SG gene families, while the others corresponded to genes of unknown function. Expression patterns of five selected genes belonging to the BPTI/Kunitz family of serine protease inhibitors, the tick salivary peptide group 1 protein, the salp15 super-family, and the arthropod defensin family, were validated by qRT-PCR. IrSPI, a member of the BPTI/Kunitz family of serine protease inhibitors, showed the highest up-regulation in SGs in response to Bartonella infection. IrSPI silencing impaired tick feeding, as well as resulted in reduced bacterial load in tick SGs. This study provides a comprehensive analysis of I. ricinus SG transcriptome and contributes significant genomic information about this important disease vector. This in-depth knowledge will enable a better understanding of the molecular interactions between ticks and tick-borne pathogens, and identifies IrSPI, a candidate to study now in detail to estimate its potentialities as vaccine against the ticks and the pathogens they transmit.


Assuntos
Infecções por Bartonella , Bartonella henselae , Comportamento Alimentar/fisiologia , Inibidores de Serina Proteinase , Carrapatos/enzimologia , Carrapatos/microbiologia , Animais , Interações Hospedeiro-Patógeno/genética , Glândulas Salivares/metabolismo , Glândulas Salivares/microbiologia , Inibidores de Serina Proteinase/genética , Inibidores de Serina Proteinase/metabolismo , Transcriptoma/genética
6.
Ticks Tick Borne Dis ; 5(6): 624-31, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25024014

RESUMO

Bovine anaplasmosis caused by infection of cattle with Anaplasma marginale has been considered to be endemic in South Africa, an assumption based primarily on the distribution of the tick vectors of A. marginale and serological studies on the prevalence of anaplasmosis in Limpopo, Free State, and North West. However, molecular evidence of the distribution of anaplasmosis has only been reported in the Free State province. In order to establish effective control measures for anaplasmosis, epidemiological surveys are needed to define the prevalence and distribution of A. marginale in South Africa. In addition, a proposed control strategy for anaplasmosis is the development of an A. marginale major surface protein 1a (MSP1a)-based vaccine. Nevertheless, regional variations of this gene would need to be characterized prior to vaccine development for South Africa. The objectives of the present study were therefore to conduct a national survey of the prevalence of A. marginale in South Africa, followed by an evaluation of the diversity and evolution of msp1a in South African strains of A. marginale. To accomplish these objectives, species-specific PCR was used to test 250 blood samples from cattle collected from all South African provinces (including 26 districts and municipalities), except the Free State province where similar studies were reported previously. The prevalence of A. marginale ranged from 65% to 100%, except in Northern Cape province where A. marginale was not detected. A correlation was found between the prevalence and genetic diversity of A. marginale MSP1a. Additionally, the genetic diversity of the A. marginale MSP1a was found to evolve under negative and positive selection, and 23 new tandem repeats in South Africa were shown to have evolved from the extant tandem repeat 4. Despite the MSP1a genetic variability, some types of tandem repeats were found to be conserved among the A. marginale strains, and low-variable peptides in MSP1a tandem repeats were subsequently identified. The results of this research confirmed that anaplasmosis is endemic in South Africa. The results of the molecular characterization of the MSP1a can then be used as the basis for development of new and novel vaccines for anaplasmosis control in South Africa.


Assuntos
Anaplasma marginale/genética , Anaplasmose/epidemiologia , Doenças dos Bovinos/microbiologia , Variação Genética , Doenças Transmitidas por Carrapatos/microbiologia , Sequência de Aminoácidos , Anaplasma marginale/classificação , Anaplasma marginale/isolamento & purificação , Anaplasmose/microbiologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Evolução Molecular , Dados de Sequência Molecular , Filogenia , Alinhamento de Sequência , África do Sul/epidemiologia , Doenças Transmitidas por Carrapatos/epidemiologia , Carrapatos/microbiologia
7.
Clin Vaccine Immunol ; 21(8): 1128-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24920604

RESUMO

Mycobacterium bovis causes animal tuberculosis (TB) in cattle, humans, and other mammalian species, including pigs. The goal of this study was to experimentally assess the responses of pigs with and without a history of tonsillectomy to oral vaccination with heat-inactivated M. bovis and challenge with a virulent M. bovis field strain, to compare pig and wild boar responses using the same vaccination model as previously used in the Eurasian wild boar (Sus scrofa), to evaluate the use of several enzyme-linked immunosorbent assays (ELISAs) and lateral flow tests for in vivo TB diagnosis in pigs, and to verify if these tests are influenced by oral vaccination with inactivated M. bovis. At necropsy, the lesion and culture scores were 20% to 43% higher in the controls than those in the vaccinated pigs. Massive M. bovis growth from thoracic tissue samples was observed in 4 out of 9 controls but in none of the 10 vaccinated pigs. No effect of the presence or absence of tonsils was observed on these scores, suggesting that tonsils are not involved in the protective response to this vaccine in pigs. The serum antibody levels increased significantly only after challenge. At necropsy, the estimated sensitivities of the ELISAs and dual path platform (DPP) assays ranged from 89% to 94%. In the oral mucosa, no differences in gene expression were observed in the control group between the pigs with and without tonsils. In the vaccinated group, the mRNA levels for chemokine (C-C motif) receptor 7 (CCR7), interferon beta (IFN-ß), and methylmalonyl coenzyme A mutase (MUT) were higher in pigs with tonsils. Complement component 3 mRNA levels in peripheral blood mononuclear cells (PBMC) increased with vaccination and decreased after M. bovis challenge. This information is relevant for pig production in regions that are endemic for M. bovis and for TB vaccine research.


Assuntos
Mycobacterium bovis/imunologia , Tonsila Palatina/imunologia , Vacinas contra a Tuberculose/imunologia , Tuberculose Pulmonar/imunologia , Tuberculose Pulmonar/veterinária , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Anticorpos Antibacterianos/imunologia , Complemento C3/genética , Ensaio de Imunoadsorção Enzimática , Interferon beta/genética , Leucócitos Mononucleares/metabolismo , Metilmalonil-CoA Mutase/genética , Mucosa Bucal/imunologia , RNA Mensageiro/biossíntese , Receptores CCR7/genética , Sus scrofa , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/microbiologia , Vacinação , Vacinas de Produtos Inativados/administração & dosagem , Vacinas de Produtos Inativados/imunologia
8.
PLoS One ; 9(5): e98048, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24842853

RESUMO

Tuberculosis (TB) remains a pandemic affecting billions of people worldwide, thus stressing the need for new vaccines. Defining the correlates of vaccine protection is essential to achieve this goal. In this study, we used the wild boar model for mycobacterial infection and TB to characterize the protective mechanisms elicited by a new heat inactivated Mycobacterium bovis vaccine (IV). Oral vaccination with the IV resulted in significantly lower culture and lesion scores, particularly in the thorax, suggesting that the IV might provide a novel vaccine for TB control with special impact on the prevention of pulmonary disease, which is one of the limitations of current vaccines. Oral vaccination with the IV induced an adaptive antibody response and activation of the innate immune response including the complement component C3 and inflammasome. Mycobacterial DNA/RNA was not involved in inflammasome activation but increased C3 production by a still unknown mechanism. The results also suggested a protective mechanism mediated by the activation of IFN-γ producing CD8+ T cells by MHC I antigen presenting dendritic cells (DCs) in response to vaccination with the IV, without a clear role for Th1 CD4+ T cells. These results support a role for DCs in triggering the immune response to the IV through a mechanism similar to the phagocyte response to PAMPs with a central role for C3 in protection against mycobacterial infection. Higher C3 levels may allow increased opsonophagocytosis and effective bacterial clearance, while interfering with CR3-mediated opsonic and nonopsonic phagocytosis of mycobacteria, a process that could be enhanced by specific antibodies against mycobacterial proteins induced by vaccination with the IV. These results suggest that the IV acts through novel mechanisms to protect against TB in wild boar.


Assuntos
Proteínas do Sistema Complemento/efeitos dos fármacos , Mycobacterium bovis/genética , Tuberculose/prevenção & controle , Vacinas de Produtos Inativados/farmacologia , Administração Oral , Animais , Anticorpos Antibacterianos/sangue , Western Blotting , Primers do DNA/genética , Células Dendríticas/imunologia , Citometria de Fluxo , Reação em Cadeia da Polimerase , Proteômica , Reação em Cadeia da Polimerase em Tempo Real , Análise de Regressão , Sus scrofa , Tuberculose/imunologia , Vacinas de Produtos Inativados/administração & dosagem
9.
BMC Vet Res ; 10: 96, 2014 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-24766746

RESUMO

BACKGROUND: Field vaccination trials with Mycobacterium bovis BCG, an attenuated mutant of M. bovis, are ongoing in Spain, where the Eurasian wild boar (Sus scrofa) is regarded as the main driver of animal tuberculosis (TB). The oral baiting strategy consists in deploying vaccine baits twice each summer, in order to gain access to a high proportion of wild boar piglets. The aim of this study was to assess the response of wild boar to re-vaccination with BCG and to subsequent challenge with an M. bovis field strain. RESULTS: BCG re-vaccinated wild boar showed reductions of 75.8% in lesion score and 66.9% in culture score, as compared to unvaccinated controls. Only one of nine vaccinated wild boar had a culture-confirmed lung infection, as compared to seven of eight controls. Serum antibody levels were highly variable and did not differ significantly between BCG re-vaccinated wild boar and controls. Gamma IFN levels differed significantly between BCG re-vaccinated wild boar and controls. The mRNA levels for IL-1b, C3 and MUT were significantly higher in vaccinated wild boar when compared to controls after vaccination and decreased after mycobacterial challenge. CONCLUSIONS: Oral re-vaccination of wild boar with BCG yields a strong protective response against challenge with a field strain. Moreover, re-vaccination of wild boar with BCG is not counterproductive. These findings are relevant given that re-vaccination is likely to happen under real (field) conditions.


Assuntos
Vacina BCG/imunologia , Mycobacterium bovis/imunologia , Sus scrofa , Tuberculose/veterinária , Imunidade Adaptativa , Administração Oral , Animais , Vacina BCG/administração & dosagem , Regulação da Expressão Gênica/imunologia , Imunidade Inata , Espanha/epidemiologia , Tuberculose/epidemiologia , Tuberculose/prevenção & controle , Vacinação/veterinária
10.
PLoS One ; 9(2): e89564, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24586875

RESUMO

BACKGROUND: Dermacentor reticulatus (Fabricius, 1794) is distributed in Europe and Asia where it infests and transmits disease-causing pathogens to humans, pets and other domestic and wild animals. However, despite its role as a vector of emerging or re-emerging diseases, very little information is available on the genome, transcriptome and proteome of D. reticulatus. Tick larvae are the first developmental stage to infest hosts, acquire infection and transmit pathogens that are transovarially transmitted and are exposed to extremely stressing conditions. In this study, we used a systems biology approach to get an insight into the mechanisms active in D. reticulatus unfed larvae, with special emphasis on stress response. PRINCIPAL FINDINGS: The results support the use of paired end RNA sequencing and proteomics informed by transcriptomics (PIT) for the analysis of transcriptomics and proteomics data, particularly for organisms such as D. reticulatus with little sequence information available. The results showed that metabolic and cellular processes involved in protein synthesis were the most active in D. reticulatus unfed larvae, suggesting that ticks are very active during this life stage. The stress response was activated in D. reticulatus unfed larvae and a Rickettsia sp. similar to R. raoultii was identified in these ticks. SIGNIFICANCE: The activation of stress responses in D. reticulatus unfed larvae likely counteracts the negative effect of temperature and other stress conditions such as Rickettsia infection and favors tick adaptation to environmental conditions to increase tick survival. These results show mechanisms that have evolved in D. reticulatus ticks to survive under stress conditions and suggest that these mechanisms are conserved across hard tick species. Targeting some of these proteins by vaccination may increase tick susceptibility to natural stress conditions, which in turn reduce tick survival and reproduction, thus reducing tick populations and vector capacity for tick-borne pathogens.


Assuntos
Vetores Aracnídeos/fisiologia , Dermacentor/fisiologia , Estresse Fisiológico , Animais , Vetores Aracnídeos/microbiologia , Proteínas de Artrópodes/genética , Proteínas de Artrópodes/metabolismo , Dermacentor/microbiologia , Privação de Alimentos , Genes Bacterianos , Larva/microbiologia , Larva/fisiologia , Biossíntese de Proteínas , Proteoma/genética , Proteoma/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Rickettsia/genética , Biologia de Sistemas , Transcriptoma
11.
PLoS One ; 8(6): e65915, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23776567

RESUMO

BACKGROUND: Tick Subolesin and its ortholog in insects and vertebrates, Akirin, have been suggested to play a role in the immune response through regulation of nuclear factor-kappa B (NF-kB)-dependent and independent gene expression via interaction with intermediate proteins that interact with NF-kB and other regulatory proteins, bind DNA or remodel chromatin to regulate gene expression. The objective of this study was to characterize the structure and regulation of subolesin in Ixodes scapularis. I. scapularis is a vector of emerging pathogens such as Borrelia burgdorferi, Anaplasma phagocytophilum and Babesia microti that cause in humans Lyme disease, anaplasmosis and babesiosis, respectively. The genome of I. scapularis was recently sequenced, and this tick serves as a model organism for the study of vector-host-pathogen interactions. However, basic biological questions such as gene organization and regulation are largely unknown in ticks and other arthropod vectors. PRINCIPAL FINDINGS: The results presented here provide evidence that subolesin/akirin are evolutionarily conserved at several levels (primary sequence, gene organization and function), thus supporting their crucial biological function in metazoans. These results showed that NF-kB (Relish) is involved in the regulation of subolesin expression in ticks, suggesting that as in other organisms, different NF-kB integral subunits and/or unknown interacting proteins regulate the specificity of the NF-kB-mediated gene expression. These results suggested a regulatory network involving cross-regulation between NF-kB (Relish) and Subolesin and Subolesin auto-regulation with possible implications in tick immune response to bacterial infection. SIGNIFICANCE: These results advance our understanding of gene organization and regulation in I. scapularis and have important implications for arthropod vectors genetics and immunology highlighting the possible role of NF-kB and Subolesin/Akirin in vector-pathogen interactions and for designing new strategies for the control of vector infestations and pathogen transmission.


Assuntos
Antígenos/genética , Proteínas de Artrópodes/genética , Vetores Artrópodes/metabolismo , Regulação da Expressão Gênica/imunologia , Redes Reguladoras de Genes/imunologia , Ixodes/metabolismo , NF-kappa B/metabolismo , Animais , Antígenos/metabolismo , Proteínas de Artrópodes/metabolismo , Sequência de Bases , Sequência Conservada/genética , Primers do DNA/genética , Eletroforese Capilar , Ensaio de Desvio de Mobilidade Eletroforética , Ensaio de Imunoadsorção Enzimática , Componentes do Gene , Ixodes/imunologia , Modelos Biológicos , Dados de Sequência Molecular , Interferência de RNA , Análise de Sequência de DNA
12.
Infect Immun ; 81(7): 2415-25, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23630955

RESUMO

Anaplasma phagocytophilum causes human granulocytic anaplasmosis. Infection with this zoonotic pathogen affects gene expression in both the vertebrate host and the tick vector, Ixodes scapularis. Here, we identified new genes, including spectrin alpha chain or alpha-fodrin (CG8) and voltage-dependent anion-selective channel or mitochondrial porin (T2), that are involved in A. phagocytophilum infection/multiplication and the tick cell response to infection. The pathogen downregulated the expression of CG8 in tick salivary glands and T2 in both the gut and salivary glands to inhibit apoptosis as a mechanism to subvert host cell defenses and increase infection. In the gut, the tick response to infection through CG8 upregulation was used by the pathogen to increase infection due to the cytoskeleton rearrangement that is required for pathogen infection. These results increase our understanding of the role of tick genes during A. phagocytophilum infection and multiplication and demonstrate that the pathogen uses similar strategies to establish infection in both vertebrate and invertebrate hosts.


Assuntos
Anaplasma phagocytophilum/patogenicidade , Apoptose , Proteínas de Transporte/metabolismo , Citoesqueleto/metabolismo , Ixodes/microbiologia , Proteínas dos Microfilamentos/metabolismo , Anaplasma phagocytophilum/genética , Animais , Proteínas de Transporte/genética , Caspase 9/genética , Caspase 9/metabolismo , Linhagem Celular , Comportamento Alimentar , Feminino , Trato Gastrointestinal/microbiologia , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Ixodes/genética , Ixodes/metabolismo , Masculino , Proteínas dos Microfilamentos/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Filogenia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Glândulas Salivares/microbiologia , Espectrina/genética , Espectrina/metabolismo , Canais de Ânion Dependentes de Voltagem/genética , Canais de Ânion Dependentes de Voltagem/metabolismo
13.
Parasit Vectors ; 5: 181, 2012 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-22935149

RESUMO

BACKGROUND: Anaplasma phagocytophilum infects a wide variety of hosts and causes granulocytic anaplasmosis in humans, horses and dogs and tick-borne fever in ruminants. Infection with A. phagocytophilum results in the modification of host gene expression and immune response. The objective of this research was to characterize gene expression in pigs (Sus scrofa) naturally and experimentally infected with A. phagocytophilum trying to identify mechanisms that help to explain low infection prevalence in this species. RESULTS: For gene expression analysis in naturally infected pigs, microarray hybridization was used. The expression of differentially expressed immune response genes was analyzed by real-time RT-PCR in naturally and experimentally infected pigs. Results suggested that A. phagocytophilum infection affected cytoskeleton rearrangement and increased both innate and adaptive immune responses by up regulation of interleukin 1 receptor accessory protein-like 1 (IL1RAPL1), T-cell receptor alpha chain (TCR-alpha), thrombospondin 4 (TSP-4) and Gap junction protein alpha 1 (GJA1) genes. Higher serum levels of IL-1 beta, IL-8 and TNF-alpha in infected pigs when compared to controls supported data obtained at the mRNA level. CONCLUSIONS: These results suggested that pigs are susceptible to A. phagocytophilum but control infection, particularly through activation of innate immune responses, phagocytosis and autophagy. This fact may account for the low infection prevalence detected in pigs in some regions and thus their low or no impact as a reservoir host for this pathogen. These results advanced our understanding of the molecular mechanisms at the host-pathogen interface and suggested a role for newly reported genes in the protection of pigs against A. phagocytophilum.


Assuntos
Anaplasma phagocytophilum/imunologia , Anaplasma phagocytophilum/patogenicidade , Interações Hospedeiro-Patógeno , Sus scrofa/imunologia , Sus scrofa/microbiologia , Transcriptoma , Animais , Autofagia , Citocinas/biossíntese , Citocinas/metabolismo , Imunidade Inata , Masculino , Análise em Microsséries , Fagocitose , Reação em Cadeia da Polimerase em Tempo Real , Suínos
14.
Vet Microbiol ; 161(1-2): 26-35, 2012 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22835526

RESUMO

Bluetongue virus (BTV) is a double-stranded RNA virus transmitted by blood-feeding biting midges of the genus Culicoides to wild and domestic ruminants, causing high morbidity and variable mortality. The aim of this study was to characterize differential gene expression in skin biopsies of red deer (Cervus elaphus) hinds experimentally infected with BTV serotypes 1 and 8. Skin biopsies were collected from BTV-1 and BTV-8 experimentally infected and control hinds at 14 and 98 days post-infection (dpi). Global gene expression profile in response to BTV infection was characterized at 14 dpi using a bovine microarray together with real-time RT-PCR analysis of differentially expressed genes at 14 and 98 dpi. Eighteen genes were upregulated and three were downregulated in response to virus infection, with no significant differences between BTV-1 and BTV-8 infected hinds. Seven unique genes, six upregulated (ISG15, PSMB8, PSMB9, BOLA, C1qA, C4) and one downregulated (FOS) were over-represented after conditional test for biological process gene ontology, which affected five molecular pathways (RIG-1, proteasome, MHC-1, complement, TLR) implicated in host immune response. BTV infection had a minor and transient effect on gene expression in hinds, as shown by the very few genes that were differentially expressed in response to infection at 14 dpi, most of which had similar expression levels between infected and uninfected animals at 98 dpi. These results suggested that red deer could control BTV infection with little effect on host molecular pathways.


Assuntos
Vírus Bluetongue/imunologia , Bluetongue/imunologia , Cervos/genética , Interações Hospedeiro-Patógeno , Pele/imunologia , Animais , Biópsia , Bluetongue/genética , Cervos/virologia , Perfilação da Expressão Gênica , Genes MHC da Classe II/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
15.
Ticks Tick Borne Dis ; 3(3): 147-53, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22534515

RESUMO

Anaplasma phagocytophilum, first identified as a pathogen of ruminants in Europe, has more recently been recognized as an emerging tick-borne pathogen of humans in the U.S. and Europe. A. phagocytophilum is transmitted by Ixodes spp., but the tick developmental cycle and pathogen/vector interactions have not been fully described. In this research, we report on the experimental infection of sheep with the human NY-18 isolate of A. phagocytophilum which then served as a host for infection of I. scapularis nymphs and adults. A. phagocytophilum was propagated in the human promyelocytic cell line, HL-60, and the infected cell cultures were then used to infect sheep by intravenous inoculation. Infections in sheep were confirmed by PCR and an Anaplasma-competitive ELISA. Clinical signs were not apparent in any of the infected sheep, and only limited hematologic and mild serum biochemical abnormalities were identified. While A. phagocytophilum morulae were rarely seen in neutrophils, blood film evaluation revealed prominent large granular lymphocytes, occasional plasma cells, and rare macrophages. Upon necropsy, gross lesions were restricted to the lymphoid system. Mild splenomegaly and lymphadenomegaly with microscopic evidence of lymphoid hyperplasia was observed in all infected sheep. Female I. scapularis that were allowed to feed and acquire infection on each of the 3 experimentally infected sheep became infected with A. phagocytophilum as determined by PCR of guts (80-87%) and salivary glands (67-100%). Female I. scapularis that acquired infection as nymphs on an experimentally infected sheep transmitted A. phagocytophilum to a susceptible sheep, thus confirming transstadial transmission. Sheep proved to be a good host for the production of I. scapularis infected with this human isolate of A. phagocytophilum, which can be used as a model for future studies of the tick/pathogen interface.


Assuntos
Anaplasma phagocytophilum/fisiologia , Vetores Aracnídeos/microbiologia , Ehrlichiose/microbiologia , Ixodes/microbiologia , Infestações por Carrapato/parasitologia , Anaplasma phagocytophilum/genética , Anaplasma phagocytophilum/imunologia , Animais , Antígenos de Bactérias/imunologia , Vetores Aracnídeos/virologia , Linhagem Celular , DNA Bacteriano/genética , Ehrlichiose/complicações , Ensaio de Imunoadsorção Enzimática , Feminino , Trato Gastrointestinal/microbiologia , Humanos , Ixodes/virologia , Masculino , Modelos Animais , Neutrófilos/microbiologia , Ninfa , Reação em Cadeia da Polimerase , Glândulas Salivares/microbiologia , Ovinos , Infestações por Carrapato/complicações
16.
Parasitol Res ; 111(3): 1391-5, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22411632

RESUMO

The horn fly Haematobia irritans (Linnaeus, 1758) (Diptera: Muscidae) is one of the most important ectoparasites of cattle. The parasitism of horn flies interferes with cattle feeding, thus reducing weight gain and milk production. Additionally, horn flies are mechanical vectors of pathogens that cause disease in cattle. The aims of this study were to identify microorganisms in partially fed female horn flies through mining of expressed sequence tags (ESTs) and to characterize microorganism prevalence using real-time RT-PCR. Seven unigenes containing 24 ESTs were homologous to infectious agents. Microorganisms identified in partially fed female horn flies ESTs included Nora virus (3 unigenes; 8 ESTs), Wolbachia endosymbionts (3 unigenes; 3 ESTs), and Mycobacterium bovis (1 unigene; 13 ESTs). These results expanded the repertoire of microorganisms that could cause persistent infections or be mechanically transmitted by horn flies and support further studies on the role of horn flies in the epidemiology of these pathogens in Mexico.


Assuntos
Dípteros/microbiologia , Dípteros/fisiologia , Mycobacterium bovis/isolamento & purificação , Picornaviridae/isolamento & purificação , Wolbachia/isolamento & purificação , Animais , Bovinos/sangue , Etiquetas de Sequências Expressas , Feminino , Mycobacterium bovis/classificação , Mycobacterium bovis/genética , Picornaviridae/classificação , Picornaviridae/genética , DNA Polimerase Dirigida por RNA , Reação em Cadeia da Polimerase em Tempo Real , Wolbachia/classificação , Wolbachia/genética
17.
Vet Parasitol ; 187(3-4): 572-7, 2012 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-22326937

RESUMO

A molecular epidemiology investigation was undertaken in two Nigerian states (Plateau and Nassarawa) to determine the prevalence of pathogens of veterinary and public health importance associated with ticks collected from cattle and dogs using PCR, cloning and sequencing or reverse line blot techniques. A total of 218 tick samples, Amblyomma variegatum (N=153), Rhipicephalus (Boophilus) decoloratus (N=45), and Rhipicephalus sanguineus (N=20) were sampled. Pathogens identified in ticks included piroplasmids (Babesia spp., Babesia bigemina and Babesia divergens), Anaplasma marginale and Rickettsia africae. Piroplasmids were identified in A. variegatum, A. marginale was found in R. decoloratus, while R. africae was detected in all tick species examined. Ehrlichia spp. and Theileria spp. were not identified in any of the ticks examined. Of the 218 ticks examined, 33 (15.1%) contained pathogen DNA, with the presence of B. divergens and R. africae that are zoonotic pathogens of public health and veterinary importance. The variety of tick-borne pathogens identified in this study suggests a risk for the emergence of tick-borne diseases in domestic animals and humans, especially amongst the Fulani pastoralists in Plateau and Nassarawa states of Nigeria.


Assuntos
Infestações por Carrapato/veterinária , Doenças Transmitidas por Carrapatos/veterinária , Carrapatos/microbiologia , Carrapatos/parasitologia , Animais , Bovinos , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/microbiologia , Doenças dos Bovinos/parasitologia , DNA Bacteriano/classificação , DNA Bacteriano/genética , DNA de Protozoário/classificação , DNA de Protozoário/genética , Doenças do Cão/epidemiologia , Doenças do Cão/microbiologia , Doenças do Cão/parasitologia , Cães , Nigéria/epidemiologia , Especificidade da Espécie , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/parasitologia , Doenças Transmitidas por Carrapatos/epidemiologia , Doenças Transmitidas por Carrapatos/microbiologia , Doenças Transmitidas por Carrapatos/parasitologia , Carrapatos/classificação
18.
Int J Parasitol ; 42(2): 187-95, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22265898

RESUMO

Ticks are obligate haematophagous ectoparasites of wild and domestic animals as well as humans, considered to be second worldwide to mosquitoes as vectors of human diseases, but the most important vectors of disease-causing pathogens in domestic and wild animals. Babesia spp. are tick-borne pathogens that cause a disease called babesiosis in a wide range of animals and in humans. In particular, Babesia bovis and Babesia bigemina are transmitted by cattle ticks, Rhipicephalus (Boophilus) annulatus and Rhipicephalus microplus, which are considered the most important cattle ectoparasites with major economic impacts on cattle production. The objectives of this study were to identify R. annulatus genes differentially expressed in response to infection with B. bigemina. Functional analyses were conducted on selected genes by RNA interference in both R. annulatus and R. microplus ticks. Eight hundred randomly selected suppression-subtractive hybridisation library clones were sequenced and analysed. Molecular function Gene Ontology assignments showed that the obtained tick sequences encoded for proteins with different cellular functions. Differentially expressed genes with putative functions in tick-pathogen interactions were selected for validation of SSH results by real-time reverse transcription-PCR. Genes encoding for TROSPA, calreticulin, ricinusin and serum amyloid A were over-expressed in B. bigemina-infected ticks while Kunitz-type protease inhibitor 5 mRNA levels were down-regulated in infected ticks. Functional analysis of differentially expressed genes by double stranded RNA-mediated RNAi showed that under the conditions of the present study knockdown of TROSPA and serum amyloid A significantly reduced B. bigemina infection levels in R. annulatus while in R. microplus, knockdown of TROSPA, serum amyloid A and calreticulin also reduced pathogen infection levels when compared with controls. Several studies have characterised the tick-pathogen interface at the molecular level. However, to our knowledge this is the first report of functional genomics studies in R. annulatus infected with B. bigemina. The results reported here increase our understanding of the role of tick genes in Babesia infection/multiplication.


Assuntos
Babesia bovis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Interações Hospedeiro-Parasita , Rhipicephalus/genética , Rhipicephalus/parasitologia , Animais , Biblioteca Gênica , Dados de Sequência Molecular , Reação em Cadeia da Polimerase em Tempo Real , Rhipicephalus/fisiologia , Análise de Sequência de DNA
19.
Onderstepoort J Vet Res ; 79(1): E1-4, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-23327303

RESUMO

Myiasis-causing larvae were extracted from dogs attending veterinary clinics in Plateau State, Nigeria and subjected to molecular analysis involving polymerase chain reaction amplification of the 28S rRNA gene of blowflies, cloning and sequencing techniques. All larvae were confirmed as Cordylobia anthropophaga Blanchard (Diptera: Calliphoridae) after the initial morphological identification. This is the first molecular identification of any myiasis-causing fly species in Nigeria and may serve as a reliable alternative to morphological identification where samples are not well preserved or difficult to identify to species level.


Assuntos
Dípteros/classificação , Dípteros/genética , Doenças do Cão/parasitologia , Miíase/veterinária , RNA Ribossômico 28S/genética , Animais , Cães , Amplificação de Genes , Larva , Miíase/parasitologia , Nigéria , Filogenia , Reação em Cadeia da Polimerase/veterinária , Especificidade da Espécie
20.
Vaccine ; 30(2): 265-72, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22085549

RESUMO

Vaccines containing the Rhipicephalus (Boophilus) microplus BM86 and BM95 antigens protect cattle against tick infestations. Tick subolesin (SUB), elongation factor 1a (EF1a) and ubiquitin (UBQ) are new candidate protective antigens for the control of cattle tick infestations. Previous studies showed that R. microplus BM95 immunogenic peptides fused to the Anaplasma marginale major surface protein (MSP) 1a N-terminal region (BM95-MSP1a) for presentation on the Escherichia coli membrane were protective against R. microplus infestations in rabbits. In this study, we extended these results by expressing SUB-MSP1a, EF1a-MSP1a and UBQ-MSP1a fusion proteins on the E. coli membrane using this system and demonstrating that bacterial membranes containing the chimeric proteins BM95-MSP1a and SUB-MSP1a were protective (>60% vaccine efficacy) against experimental R. microplus and Rhipicephalus annulatus infestations in cattle. This system provides a novel, simple and cost-effective approach for the production of tick protective antigens by surface display of antigenic protein chimera on the E. coli membrane and demonstrates the possibility of using recombinant bacterial membrane fractions in vaccine preparations to protect cattle against tick infestations.


Assuntos
Vacinas Bacterianas/imunologia , Doenças dos Bovinos/prevenção & controle , Proteínas de Insetos/imunologia , Glicoproteínas de Membrana/imunologia , Rhipicephalus/imunologia , Infestações por Carrapato/veterinária , Animais , Vacinas Bacterianas/administração & dosagem , Bovinos , Doenças dos Bovinos/imunologia , Doenças dos Bovinos/parasitologia , Membrana Celular/genética , Membrana Celular/imunologia , Escherichia coli/genética , Escherichia coli/imunologia , Proteínas de Insetos/genética , Glicoproteínas de Membrana/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Infestações por Carrapato/parasitologia , Infestações por Carrapato/prevenção & controle , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA