Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cereb Cortex ; 23(11): 2581-91, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22892424

RESUMO

Chronic cannabinoid exposure results in tolerance due to region-specific desensitization and down-regulation of CB1 cannabinoid receptors (CB1Rs). For most G-protein-coupled receptors, internalization closely follows rapid desensitization as an important component of long-term down-regulation. However, in vivo patterns of CB1R internalization are not known. Here we investigate the subcellular redistribution of CB1Rs in the rat forebrain following activation by agonist CP55 940 or inhibition by antagonist/inverse agonist AM251. At steady state, CB1Rs are mainly localized to the cell membrane of preterminal axon shafts and, to a lesser degree, to synaptic terminals. A high proportion of CB1Rs is also localized to somatodendritic endosomes. Inhibition of basal activation by acute AM251 administration decreases the number of cell bodies containing CB1R-immunoreactive endosomes, suggesting that CB1Rs are permanently activated and internalized at steady state. On the contrary, acute agonist treatment induces rapid and important increase of endosomal CB1R immunolabeling, likely due to internalization and retrograde transport of axonal CB1Rs. Repeated agonist treatment is necessary to significantly reduce initially high levels of axonal CB1R labeling, in addition to increasing somatodendritic endosomal CB1R labeling in cholecystokinin-positive interneurons. This redistribution displays important region-specific differences; it is most pronounced in the neocortex and hippocampus and absent in basal ganglia.


Assuntos
Neurônios/metabolismo , Prosencéfalo/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Animais , Cicloexanóis/farmacologia , Endossomos/metabolismo , Espaço Intracelular/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Piperidinas/farmacologia , Prosencéfalo/efeitos dos fármacos , Prosencéfalo/ultraestrutura , Pirazóis/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor CB1 de Canabinoide/agonistas , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB1 de Canabinoide/ultraestrutura
2.
Brain Struct Funct ; 217(2): 323-35, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22081168

RESUMO

The paralemniscal area, situated between the pontine reticular formation and the lateral lemniscus in the pontomesencephalic tegmentum contains some tuberoinfundibular peptide of 39 residues (TIP39)-expressing neurons. In the present study, we measured a 4 times increase in the level of TIP39 mRNA in the paralemniscal area of lactating mothers as opposed to nulliparous females and mothers deprived of pups using real-time RT-PCR. In situ hybridization histochemistry and immunolabeling demonstrated that the induction of TIP39 in mothers takes place within the medial paralemniscal nucleus, a cytoarchitectonically distinct part of the paralemniscal area, and that the increase in TIP39 mRNA levels translates into elevated peptide levels in dams. The paralemniscal area has been implicated in maternal control as well as in pain perception. To establish the function of induced TIP39, we investigated the activation of TIP39 neurons in response to pup exposure as maternal, and formalin injection as noxious stimulus. Both stimuli elicited c-fos expression in the paralemniscal area. Subsequent double labeling demonstrated that 95% of neurons expressing Fos in response to pup exposure also contained TIP39 immunoreactivity and 91% of TIP39 neurons showed c-fos activation by pup exposure. In contrast, formalin-induced Fos does not co-localize with TIP39. Instead, most formalin-activated neurons are situated medial to the TIP39 cell group. Our data indicate that paralemniscal neurons may be involved in the processing of maternal and nociceptive information. However, two different groups of paralemniscal neurons participate in the two functions. In particular, TIP39 neurons may participate in the control of maternal functions.


Assuntos
Lactação/fisiologia , Neuropeptídeos/metabolismo , Nociceptividade/fisiologia , Ponte/metabolismo , Formação Reticular/metabolismo , Tegmento Mesencefálico/metabolismo , Animais , Feminino , Formaldeído/farmacologia , Hibridização In Situ , Masculino , Modelos Animais , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ponte/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Formação Reticular/patologia , Tegmento Mesencefálico/patologia
3.
Peptides ; 31(8): 1589-97, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20434498

RESUMO

Orexins are expressed in neurons of the dorsolateral hypothalamus and their axons widely distribute throughout the central nervous system. The noradrenergic cell groups of the lower brainstem belong to the targets of these orexin projections. Double immunostainings for orexin and phenylethanolamine N-methyltransferase (PNMT), as well as orexin and tyrosine hydroxylase (TH) were applied to demonstrate the orexinergic innervation of catecholamine cell groups in the lower brainstem of the mouse and the rat. In various densities, networks of orexin-positive fibers and terminals were present on neurons of each adrenaline (C1, C2, C3) and noradrenaline (locus coeruleus, A1, A2, A4, A5 and A7) cell groups. The most dense networks of orexin fibers and terminals were detected in the locus coeruleus, the subcoeruleus area, and in the nucleus of the solitary tract. By using confocal microscope to analyze triple immunostainings we could detect that about two-third of the orexin-PNMT or orexin-TH immunopositive close contacts contained synaptophysin (a presynapse-specific protein) in the C1, C2 and C3 adrenaline, or in the A1, A2 noradrenaline cell groups, respectively. Orexin-immunopositive axons in the C1, C2, as well as A1, A2 and A6 cell groups have been examined by an electron microscope. Relatively few asymmetrical (excitatory) synaptic contacts could be demonstrated between PNMT- or TH-positive dendrites and orexin terminals, although the vast majority of orexin-positive axons was located in juxtaposition to PNMT- or TH-positive neurons.


Assuntos
Tronco Encefálico/fisiologia , Comunicação Celular , Epinefrina/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Fibras Nervosas/metabolismo , Neurônios/fisiologia , Neuropeptídeos/metabolismo , Norepinefrina/metabolismo , Animais , Tronco Encefálico/enzimologia , Tronco Encefálico/ultraestrutura , Locus Cerúleo/enzimologia , Locus Cerúleo/metabolismo , Locus Cerúleo/ultraestrutura , Bulbo/enzimologia , Bulbo/fisiologia , Bulbo/ultraestrutura , Camundongos , Fibras Nervosas/enzimologia , Fibras Nervosas/ultraestrutura , Rede Nervosa/enzimologia , Rede Nervosa/metabolismo , Rede Nervosa/ultraestrutura , Neurônios/enzimologia , Neurônios/ultraestrutura , Orexinas , Feniletanolamina N-Metiltransferase/metabolismo , Ponte/enzimologia , Ponte/metabolismo , Ponte/ultraestrutura , Terminações Pré-Sinápticas/enzimologia , Terminações Pré-Sinápticas/metabolismo , Terminações Pré-Sinápticas/ultraestrutura , Ratos , Ratos Wistar , Núcleo Solitário/enzimologia , Núcleo Solitário/metabolismo , Núcleo Solitário/ultraestrutura , Sinaptofisina/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
4.
J Chem Neuroanat ; 36(1): 59-68, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18495420

RESUMO

Tuberoinfundibular peptide of 39 residues (TIP39) was identified as the endogenous ligand of parathyroid hormone 2 receptor. We have recently demonstrated that TIP39 expression in adult rat brain is confined to the subparafascicular area of the thalamus with a few cells extending laterally into the posterior intralaminar thalamic nucleus (PIL), and the medial paralemniscal nucleus (MPL) in the lateral pontomesencephalic tegmentum. During postnatal development, TIP39 expression increases until postnatal day 33 (PND-33), then decreases, and almost completely disappears by PND-125. Here, we report the expression of TIP39 during early brain development. TIP39-immunoreactive (TIP39-ir) neurons in the subparafascicular area first appeared at PND-1. In contrast, TIP39-ir neurons were detectable in the MPL at embryonic day 14.5 (ED-14.5), and the intensity of their labeling increased thereafter. We also identified TIP39-ir neurons between ED-16.5 and PND-5 in two additional brain areas, the PIL and the amygdalo-hippocampal transitional zone (AHi). We confirmed the specificity of TIP39 immunolabeling by demonstrating TIP39 mRNA using in situ hybridization histochemistry. In the PIL, TIP39 neurons are located medial to the CGRP group as demonstrated by double immunolabeling. All TIP39-ir neurons in the AHi and most TIP39-ir neurons in the PIL disappear during early postnatal development. The adult pattern of TIP39-ir fibers emerge during postnatal development. However, fibers emanating from PIL can be followed in the supraoptic decussations towards the hypothalamus at ED-18.5. These TIP39-ir fibers disappear by PND-1. The complex pattern of TIP39 expression during early brain development suggests the involvement of TIP39 in transient functions during ontogeny.


Assuntos
Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/metabolismo , Neuropeptídeos/biossíntese , Animais , Feminino , Imuno-Histoquímica , Hibridização In Situ , RNA Mensageiro/análise , Ratos , Ratos Wistar
5.
Neuropharmacology ; 53(1): 101-12, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17544458

RESUMO

Activation of different brain regions for acute pain-related stress induced by a single subcutaneous injection of 4% formalin was investigated in histidine decarboxylase-deficient mice. Besides pain- and stress-related brain areas and the tuberomamillary neurons, strong Fos activation and c-fos mRNA expression were found in distinct brain regions and cell types, which have not been activated in wild type control mice. These structures include the circumventricular organs (organum vasculosum of the lamina terminalis, subfornical organ, area postrema), some of the ependymal cells along the wall of the ventricles, tanycytes in the third ventricle's ependyma and the median eminence, as well as in the epithelial cells of the choroid plexus in the lateral, third and fourth ventricles. All of these areas and cell types are known as compartments of the brain-blood-cerebrospinal fluid interface. The present observations provide strong evidence that an acute stressor, formalin-evoked painful stimulus elicits rapid alterations in the activity of neuroglial elements of histidine decarboxylase-deficient mice that are directly involved in the communication between the brain and the cerebrospinal fluid space.


Assuntos
Encéfalo/metabolismo , Encéfalo/patologia , Regulação da Expressão Gênica/genética , Histidina Descarboxilase/fisiologia , Dor/patologia , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Comportamento Animal , Ventrículos Cerebrais/metabolismo , Plexo Corióideo/metabolismo , Epêndima/metabolismo , Formaldeído , Regulação da Expressão Gênica/efeitos dos fármacos , Histidina Descarboxilase/deficiência , Hibridização In Situ/métodos , Camundongos , Camundongos Knockout , Dor/induzido quimicamente , Proteínas Proto-Oncogênicas c-fos/genética , Fatores de Tempo
6.
Neurochem Res ; 32(9): 1423-33, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17406981

RESUMO

Gene PRSS3 on chromosome 9 of the human genome encodes, due to alternative splicing, both mesotrypsinogen and trypsinogen 4. Mesotrypsinogen has long been known as a minor component of trypsinogens expressed in human pancreas, while the mRNA for trypsinogen 4 has recently been identified in brain and other human tissues. We measured the amount of trypsinogen 4 mRNA and the quantity of the protein as well in 17 selected areas of the human brain. Our data suggest that human trypsinogen 4 is widely but unevenly distributed in the human brain. By immunohistochemistry, here we show that this protease is localized in neurons and glial cells, predominantly in astrocytes. In addition to cellular immunoreactivity, human trypsinogen 4 immunopositive dots were detected in the extracellular matrix, supporting the view that human trypsinogen 4 might be released from the cells under special conditions.


Assuntos
Encéfalo/enzimologia , RNA Mensageiro/metabolismo , Tripsina/metabolismo , Matriz Extracelular/enzimologia , Humanos , Imuno-Histoquímica , Neuroglia/enzimologia , Neurônios/enzimologia , Reação em Cadeia da Polimerase , Distribuição Tecidual
7.
Ideggyogy Sz ; 60(3-4): 83-8, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17451045

RESUMO

The area subpostrema (ASP) is a V-shaped area, ventral and ventrolateral to the area postrema. It constitutes the upper border zone of the commissural portion of the nucleus of the solitary tract. The ASP is considered as a morphological and functional key area for the medullary autonomic center. The capillaries here, in contrast to the capillaries of the area postrema are not fenestrated but establish a specific staining for acetylcholinaestherase (AChE). The ASP contains a high density of fibers and terminals of several neuropeptides which are known to affect on NTS activity. Receptors of different neuropeptids and cathecholamines and a dense network of GFAP positive glial processes are found also here. The neurons and the glial cells of the ASP are connected with the AP and a bidirectional connection exists between the ASP and NTS.


Assuntos
Bulbo/anatomia & histologia , Acetilcolinesterase/análise , Animais , Área Postrema/anatomia & histologia , Sistema Nervoso Autônomo/anatomia & histologia , Receptor do Peptídeo Semelhante ao Glucagon 1 , Peptídeos e Proteínas de Sinalização Intracelular/análise , Bulbo/irrigação sanguínea , Bulbo/química , Bulbo/ultraestrutura , Microcirculação , Neuropeptídeos/análise , Orexinas , Ratos , Receptores de Glucagon/análise , Receptores de Neuropeptídeo Y/análise
8.
Ideggyogy Sz ; 60(3-4): 118-23, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17451051

RESUMO

Human brain trypsin(ogen) 4-like (HT-4) immunoreactivity was localized in glial cells of human cerebral cortex and spinal cord. After a short post mortem delay (two hours), cortical and spinal cord regions were dissected, frozen or immersed into a fixative solution. Sections of 10 and 50 microm thickness were cut and immunostained by antibodies raised against recombinant human trypsin 4. HT-4-like immunoreactive glial cells and fibers were stained in the white matter, low to moderate levels of immunostaining were also observed in the matrix of the cerebral cortex and the spinal cord. To characterize HT-4-like immunopositive glial cells, alternate sections were immunostained for astrocytes and oligodendrocytes. HT-4 is present predominantly in astrocytes, but some of the oligodendrocytes and microglial cells may also contain this enzyme.


Assuntos
Córtex Cerebral/enzimologia , Medula Espinal/enzimologia , Tripsina/análise , Anticorpos Monoclonais/análise , Cadáver , Feminino , Humanos , Masculino , Neuroglia/enzimologia , RNA Mensageiro/análise , Tripsina/genética , Tripsina/imunologia , Tripsinogênio/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA