Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nat Commun ; 13(1): 1440, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301333

RESUMO

There has been a global increase in rates of obesity with a parallel epidemic of non-alcoholic fatty liver disease (NAFLD). Autophagy is an essential mechanism involved in the degradation of cellular material and has an important function in the maintenance of liver homeostasis. Here, we explore the effect of Autophagy-related 5 (Atg5) deficiency in liver CD11c+ cells in mice fed HFD. When compared to control mice, Atg5-deficient CD11c+ mice exhibit increased glucose intolerance and decreased insulin sensitivity when fed HFD. This phenotype is associated with the development of NAFLD. We observe that IL-23 secretion is induced in hepatic CD11c+ myeloid cells following HFD feeding. We demonstrate that both therapeutic and preventative IL-23 blockade alleviates glucose intolerance, insulin resistance and protects against NAFLD development. This study provides insights into the function of autophagy and IL-23 production by hepatic CD11c+ cells in NAFLD pathogenesis and suggests potential therapeutic targets.


Assuntos
Resistência à Insulina , Hepatopatia Gordurosa não Alcoólica , Animais , Autofagia , Dieta Hiperlipídica/efeitos adversos , Resistência à Insulina/genética , Interleucina-23/metabolismo , Fígado/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
2.
Nat Commun ; 12(1): 2526, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953190

RESUMO

The prevalence of asthma and airway hyperreactivity (AHR) is increasing at an alarming rate. Group 2 innate lymphoid cells (ILC2s) are copious producers of type 2 cytokines, which leads to AHR and lung inflammation. Here, we show that mouse ILC2s express CD200 receptor (CD200R) and this expression is inducible. CD200R engagement inhibits activation, proliferation and type 2 cytokine production, indicating an immunoregulatory function for the CD200-CD200R axis on ILC2s. Furthermore, CD200R engagement inhibits both canonical and non-canonical NF-κB signaling pathways in activated ILC2s. Additionally, we demonstrate both preventative and therapeutic approaches utilizing CD200R engagement on ILC2s, which lead to improved airway resistance, dynamic compliance and eosinophilia. These results show CD200R is expressed on human ILC2s, and its engagement ameliorates AHR in humanized mouse models, emphasizing the translational applications for treatment of ILC2-related diseases such as allergic asthma.


Assuntos
Antígenos CD/metabolismo , Asma/metabolismo , Imunidade Inata/imunologia , Linfócitos/metabolismo , Receptores de Orexina/metabolismo , Pneumonia/metabolismo , Animais , Antígenos CD/genética , Asma/imunologia , Proliferação de Células , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Eosinofilia , Feminino , Humanos , Interleucina-33/metabolismo , Pulmão/metabolismo , Glicoproteínas de Membrana , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Orexina/genética , Pneumonia/imunologia
3.
Mucosal Immunol ; 14(4): 899-911, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33731828

RESUMO

Allergic asthma is a chronic inflammatory disorder associated with airway hyperreactivity (AHR) whose global prevalence is increasing at an alarming rate. Group 2 innate lymphoid cells (ILC2s) and T helper 2 (TH2) cells are producers of type 2 cytokines, which may contribute to development of AHR. In this study, we explore the potential of CD52-targeted depletion of type 2 immune cells for treating allergic AHR. Here we show that anti-CD52 therapy can prevent and remarkably reverse established IL-33-induced AHR by reducing airway resistance and alleviating lung inflammation. We further show that CD52 depletion prevents and treats allergic AHR induced by clinically relevant allergens such as Alternaria alternata and house dust mite. Importantly, we leverage various humanized mice models of AHR to show new therapeutic applications for Alemtuzumab, an anti-CD52 depleting antibody that is currently FDA approved for treatment of multiple sclerosis. Our results demonstrate that CD52 depletion is a viable therapeutic option for reduction of pulmonary inflammation, abrogation of eosinophilia, improvement of lung function, and thus treatment of allergic AHR. Taken together, our data suggest that anti-CD52 depleting monoclonal antibodies, such as Alemtuzumab, can serve as viable therapeutic drugs for amelioration of TH2- and ILC2-dependent AHR.


Assuntos
Alemtuzumab/farmacologia , Anti-Inflamatórios/farmacologia , Antineoplásicos Imunológicos/farmacologia , Asma/etiologia , Antígeno CD52/antagonistas & inibidores , Pneumonia/etiologia , Imunidade Adaptativa/imunologia , Alérgenos/imunologia , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Asma/patologia , Proteínas de Ligação a DNA/deficiência , Modelos Animais de Doenças , Suscetibilidade a Doenças , Humanos , Imunidade Inata , Subpopulações de Linfócitos , Camundongos , Camundongos Knockout , Pneumonia/tratamento farmacológico , Pneumonia/metabolismo , Pneumonia/patologia , Pyroglyphidae/imunologia , Células Th2/imunologia , Células Th2/metabolismo
4.
J Allergy Clin Immunol ; 147(4): 1281-1295.e5, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32905799

RESUMO

BACKGROUND: Group 2 innate lymphoid cells (ILC2s) are the dominant innate lymphoid cell population in the lungs at steady state, and their release of type 2 cytokines is a central driver in responding eosinophil infiltration and increased airway hyperreactivity. Our laboratory has identified a unique subset of ILC2s in the lungs that actively produce IL-10 (ILC210s). OBJECTIVE: Our aim was to characterize the effector functions of ILC210s in the development and pathology of allergic asthma. METHODS: IL-4-stimulated ILC210s were isolated to evaluate cytokine secretion, transcription factor signaling, metabolic dependence, and effector functions in vitro. ILC210s were also adoptively transferred into Rag2-/-γc-/- mice, which were then challenged with IL-33 and assessed for airway hyperreactivity and lung inflammation. RESULTS: We have determined that the transcription factors cMaf and Blimp-1 regulate IL-10 expression in ILC210s. Strikingly, our results demonstrate that ILC210s can utilize both autocrine and paracrine signaling to suppress proinflammatory ILC2 effector functions in vitro. Further, this subset dampens airway hyperreactivity and significantly reduces lung inflammation in vivo. Interestingly, ILC210s demonstrated a metabolic dependency on the glycolytic pathway for IL-10 production, shifting from the fatty acid oxidation pathway conventionally utilized for proinflammatory effector functions. CONCLUSION: These findings provide an important and previously unrecognized role of ILC210s in diseases associated with ILC2s such as allergic lung inflammation and asthma. They also provide new insights into the metabolism dependency of proinflammatory and anti-inflammatory ILC2 phenotypes.


Assuntos
Asma/imunologia , Hiper-Reatividade Brônquica/imunologia , Interleucina-10/imunologia , Linfócitos/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Proteínas Proto-Oncogênicas c-maf/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Feminino , Masculino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
5.
Int J Mol Sci ; 22(1)2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-33374266

RESUMO

High-density lipoproteins (HDLs) display endothelial protective effects. We tested the role of SR-BI, an HDL receptor expressed by endothelial cells, in the neuroprotective effects of HDLs using an experimental model of acute ischemic stroke. After transient intraluminal middle cerebral artery occlusion (tMCAO), control and endothelial SR-BI deficient mice were intravenously injected by HDLs or saline. Infarct volume and blood-brain barrier (BBB) breakdown were assessed 24 h post tMCAO. The potential of HDLs and the role of SR-BI to maintain the BBB integrity was assessed by using a human cellular model of BBB (hCMEC/D3 cell line) subjected to oxygen-glucose deprivation (OGD). HDL therapy limited the infarct volume and the BBB leakage in control mice relative to saline injection. Interestingly, these neuroprotective effects were thwarted by the deletion of SR-BI in endothelial cells and preserved in mice deficient for SR-BI in myeloid cells. In vitro studies revealed that HDLs can preserve the integrity of the BBB in OGD conditions, and that this effect was reduced by the SR-BI inhibitor, BLT-1. The protection of BBB integrity plays a pivotal role in HDL therapy of acute ischemic stroke. Our results show that this effect is partially mediated by the HDL receptor, SR-BI expressed by endothelial cells.


Assuntos
Barreira Hematoencefálica/metabolismo , Células Endoteliais/metabolismo , Lipoproteínas HDL/farmacologia , Fármacos Neuroprotetores/farmacologia , Receptores Depuradores Classe B/metabolismo , Acidente Vascular Cerebral/tratamento farmacológico , Animais , Linhagem Celular , Ciclopentanos/farmacologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Receptores Depuradores Classe B/antagonistas & inibidores , Receptores Depuradores Classe B/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/metabolismo , Tiossemicarbazonas/farmacologia
6.
Front Immunol ; 11: 542818, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193309

RESUMO

Asthma is a heterogeneous airway inflammatory disease characterized by increased airway hyperreactivity (AHR) to specific and unspecific stimuli. Group 2 innate lymphoid cells (ILC2)s are type-2 cytokine secreting cells capable of inducing eosinophilic lung inflammation and AHR independent of adaptive immunity. Remarkably, reports show that ILC2s are increased in the blood of human asthmatics as compared to healthy donors. Nevertheless, whether ILC2 expression of adhesion molecules regulates ILC2 trafficking remains unknown. Our results show that IL-33-activated ILC2s not only express LFA-1 but also strikingly LFA-1 ligand ICAM-1. Both LFA-1-/- and ICAM-1-/- mice developed attenuated AHR in response to IL-33 intranasal challenge, associated with a lower airway inflammation and less lung ILC2 accumulation compared to controls. Our mixed bone marrow chimera studies however revealed that ILC2 expression of LFA-1 - but not ICAM-1 - was required for their accumulation in the inflamed lungs. Importantly, we found that LFA-1 remarkably controlled ILC2 homing to the lungs, suggesting that LFA-1 is involved in ILC2 trafficking to the lungs. Our exploratory transcriptomic analysis further revealed that ICAM-1 deficiency on ILC2s significantly affects their effector functions. While it downregulated pro-inflammatory cytokines such as Il5, Il9, Il13, and Csf2, it however notably also upregulated cytokines including Il10 both at the transcriptomic and protein levels. These findings provide novel avenues for future investigations, as modulation of LFA-1 and/or ICAM-1 represents an unappreciated regulatory mechanism for ILC2 trafficking and cytokine production respectively, potentially serving as therapeutic target for ILC2-dependent diseases such as allergic asthma.


Assuntos
Asma/imunologia , Movimento Celular/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Pulmão/imunologia , Antígeno-1 Associado à Função Linfocitária/imunologia , Linfócitos/imunologia , Animais , Asma/genética , Asma/patologia , Movimento Celular/genética , Citocinas/genética , Citocinas/imunologia , Molécula 1 de Adesão Intercelular/genética , Pulmão/patologia , Antígeno-1 Associado à Função Linfocitária/genética , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout
7.
PLoS One ; 15(9): e0237496, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32881912

RESUMO

BACKGROUND: Obesity is often associated with inflammation in adipose tissue (AT) with release of mediators of atherogenesis. We postulated that it would be feasible to collect sufficient abdominal AT to quantify changes in a broad array of adaptive and innate mononuclear white cells in obese non-diabetic adults in response to a dipeptidyl protease inhibitor (DPP4i), known to inhibit activation of immune white cells. METHODS: Adults 18-55 years-of-age were screened for abdominal obesity and insulin resistance or impaired glucose tolerance but without known inflammatory conditions. Twenty-one eligible participants consented for study and were randomized 3:1 to receive sitagliptin (DPP4i) at 100mg or matching placebo daily for 28 days. Abdominal AT collected by percutaneous biopsy and peripheral blood mononuclear cell fractions were evaluated before and after treatment; plasma was stored for batch testing. RESULTS: Highly sensitive C-reactive protein, a global marker of inflammation, was not elevated in the study population. Innate lymphoid cells (ILC) type 3 (ILC-3) in abdominal AT decreased with active treatment compared with placebo (p = 0.04). Other immune white cells in AT and peripheral blood mononuclear cell (PBMC) fractions did not change with treatment compared to placebo (p>0.05); although ILC-2 declined in PBMCs (p = 0.007) in the sitagliptin treatment group. Two circulating biomarkers of atherogenesis, interferon-inducible protein-10 (IP-10) and sCD40L declined in plasma (p = 0.02 and p = 0.07, respectively) in the active treatment group, providing indirect validation of a net reduction in inflammation. CONCLUSIONS: In this pilot study, two cell types of the innate lymphoid system, ILC-3 in AT and ILC-2 PBMCs declined during treatment and as did circulating biomarkers of atherogenesis. Changes in other immune cells were not demonstrable. The study showed that sufficient abdominal AT could be obtained to quantify white cells of both innate and adaptive immunity and to demonstrate changes during therapy with an immune inhibitor. TRIAL REGISTRATION: ClinicalTrials.gov identifier (NCT number): NCT02576.


Assuntos
Gordura Abdominal/patologia , Imunidade Inata , Leucócitos Mononucleares/patologia , Obesidade/imunologia , Adulto , Biomarcadores/sangue , Estudos de Viabilidade , Feminino , Citometria de Fluxo , Humanos , Linfócitos/patologia , Masculino , Pessoa de Meia-Idade , Obesidade/sangue , Fosfato de Sitagliptina/farmacologia , Resultado do Tratamento
8.
Nat Commun ; 11(1): 4718, 2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32948777

RESUMO

Disturbances in glucose homeostasis and low-grade chronic inflammation culminate into metabolic syndrome that increase the risk for the development of type 2 diabetes mellitus (T2DM). The recently discovered group 2 innate lymphoid cells (ILC2s) are capable of secreting copious amounts of type 2 cytokines to modulate metabolic homeostasis in adipose tissue. In this study, we have established that expression of Death Receptor 3 (DR3), a member of the TNF superfamily, on visceral adipose tissue (VAT)-derived murine and peripheral blood human ILC2s is inducible by IL-33. We demonstrate that DR3 engages the canonical and/or non-canonical NF-κB pathways, and thus stimulates naïve and co-stimulates IL-33-activated ILC2s. Importantly, DR3 engagement on ILC2s significantly ameliorates glucose tolerance, protects against insulin-resistance onset and remarkably reverses already established insulin-resistance. Taken together, these results convey the potent role of DR3 as an ILC2 regulator and introduce DR3 agonistic treatment as a novel therapeutic avenue for treating T2DM.


Assuntos
Tecido Adiposo/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Linfócitos/metabolismo , Membro 25 de Receptores de Fatores de Necrose Tumoral/metabolismo , Adipócitos/metabolismo , Adolescente , Adulto , Idoso , Animais , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Feminino , Glucose/metabolismo , Homeostase , Humanos , Imunidade Inata , Resistência à Insulina , Interleucina-33/metabolismo , Gordura Intra-Abdominal/metabolismo , Masculino , Síndrome Metabólica/complicações , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Membro 25 de Receptores de Fatores de Necrose Tumoral/uso terapêutico , Adulto Jovem
9.
Nat Commun ; 11(1): 3998, 2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32778730

RESUMO

Allergic asthma is a leading chronic disease associated with airway hyperreactivity (AHR). Type-2 innate lymphoid cells (ILC2s) are a potent source of T-helper 2 (Th2) cytokines that promote AHR and lung inflammation. As the programmed cell death protein-1 (PD-1) inhibitory axis regulates a variety of immune responses, here we investigate PD-1 function in pulmonary ILC2s during IL-33-induced airway inflammation. PD-1 limits the viability of ILC2s and downregulates their effector functions. Additionally, PD-1 deficiency shifts ILC2 metabolism toward glycolysis, glutaminolysis and methionine catabolism. PD-1 thus acts as a metabolic checkpoint in ILC2s, affecting cellular activation and proliferation. As the blockade of PD-1 exacerbates AHR, we also develop a human PD-1 agonist and show that it can ameliorate AHR and suppresses lung inflammation in a humanized mouse model. Together, these results highlight the importance of PD-1 agonistic treatment in allergic asthma and underscore its therapeutic potential.


Assuntos
Asma/imunologia , Asma/metabolismo , Imunidade Inata/imunologia , Linfócitos/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Animais , Citocinas/metabolismo , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Humanos , Inflamação/imunologia , Subunidade gama Comum de Receptores de Interleucina/genética , Interleucina-33/metabolismo , Pulmão/imunologia , Pulmão/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Células Th2/metabolismo , Transcriptoma
10.
Front Immunol ; 11: 1337, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32733448

RESUMO

Autophagy is a cellular recycling system found in almost all types of eukaryotic organisms. The system is made up of a variety of proteins which function to deliver intracellular cargo to lysosomes for formation of autophagosomes in which the contents are degraded. The maintenance of cellular homeostasis is key in the survival and function of a variety of human cell populations. The interconnection between metabolism and autophagy is extensive, therefore it has a role in a variety of different cell functions. The disruption or dysfunction of autophagy in these cell types have been implicated in the development of a variety of inflammatory diseases including asthma. The role of autophagy in non-immune and immune cells both lead to the pathogenesis of lung inflammation. Autophagy in pulmonary non-immune cells leads to tissue remodeling which can develop into chronic asthma cases with long term effects. The role autophagy in the lymphoid and myeloid lineages in the pathology of asthma differ in their functions. Impaired autophagy in lymphoid populations have been shown, in general, to decrease inflammation in both asthma and inflammatory disease models. Many lymphoid cells rely on autophagy for effector function and maintained inflammation. In stark contrast, autophagy deficient antigen presenting cells have been shown to have an activated inflammasome. This is largely characterized by a TH17 response that is accompanied with a much worse prognosis including granulocyte mediated inflammation and steroid resistance. The cell specificity associated with changes in autophagic flux complicates its targeting for amelioration of asthmatic symptoms. Differing asthmatic phenotypes between TH2 and TH17 mediated disease may require different autophagic modulations. Therefore, treatments call for a more cell specific and personalized approach when looking at chronic asthma cases. Viral-induced lung inflammation, such as that caused by SARS-CoV-2, also may involve autophagic modulation leading to inflammation mediated by lung resident cells. In this review, we will be discussing the role of autophagy in non-immune cells, myeloid cells, and lymphoid cells for their implications into lung inflammation and asthma. Finally, we will discuss autophagy's role viral pathogenesis, immunometabolism, and asthma with insights into autophagic modulators for amelioration of lung inflammation.


Assuntos
Asma/complicações , Asma/patologia , Autofagia/imunologia , Betacoronavirus , Infecções por Coronavirus/complicações , Infecções por Coronavirus/patologia , Pneumonia Viral/complicações , Pneumonia Viral/patologia , Animais , Asma/imunologia , Autofagossomos/metabolismo , Autofagia/efeitos dos fármacos , COVID-19 , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Células Dendríticas/metabolismo , Humanos , Linfócitos/metabolismo , Lisossomos/metabolismo , Células Mieloides/metabolismo , Pandemias , Pneumonia Viral/tratamento farmacológico , Pneumonia Viral/imunologia , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Transdução de Sinais/imunologia
11.
Cardiovasc Res ; 116(3): 554-565, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31119270

RESUMO

AIMS: SR-B1 is a cholesterol transporter that exerts anti-atherogenic properties in liver and peripheral tissues in mice. Bone marrow (BM) transfer studies suggested an atheroprotective role in cells of haematopoietic origin. Here, we addressed the specific contribution of SR-B1 in the monocyte/macrophage. METHODS AND RESULTS: We generated mice deficient for SR-B1 in monocytes/macrophages (Lysm-Cre × SR-B1f/f) and transplanted their BM into Ldlr-/- mice. Fed a cholesterol-rich diet, these mice displayed accelerated aortic atherosclerosis characterized by larger macrophage-rich areas and decreased macrophage apoptosis compared with SR-B1f/f transplanted controls. These findings were reproduced in BM transfer studies using another atherogenic mouse recipient (SR-B1 KOliver × Cholesteryl Ester Transfer Protein). Haematopoietic reconstitution with SR-B1-/- BM conducted in parallel generated similar results to those obtained with Lysm-Cre × SR-B1f/f BM; thus suggesting that among haematopoietic-derived cells, SR-B1 exerts its atheroprotective role primarily in monocytes/macrophages. Consistent with our in vivo data, free cholesterol (FC)-induced apoptosis of macrophages was diminished in the absence of SR-B1. This effect could not be attributed to differential cellular cholesterol loading. However, we observed that expression of apoptosis inhibitor of macrophage (AIM) was induced in SR-B1-deficient macrophages, and notably upon FC-loading. Furthermore, we demonstrated that macrophages were protected from FC-induced apoptosis by AIM. Finally, AIM protein was found more present within the macrophage-rich area of the atherosclerotic lesions of SR-B1-deficient macrophages than controls. CONCLUSION: Our findings suggest that macrophage SR-B1 plays a role in plaque growth by controlling macrophage apoptosis in an AIM-dependent manner.


Assuntos
Aorta/metabolismo , Doenças da Aorta/metabolismo , Apoptose , Aterosclerose/metabolismo , Macrófagos/metabolismo , Placa Aterosclerótica , Receptores Depuradores Classe B/deficiência , Animais , Aorta/patologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Proteínas Reguladoras de Apoptose/metabolismo , Aterosclerose/genética , Aterosclerose/patologia , Transplante de Medula Óssea , Colesterol/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Humanos , Macrófagos/patologia , Macrófagos/transplante , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/deficiência , Receptores de LDL/genética , Receptores Depuradores/metabolismo , Fator de Transcrição STAT3/metabolismo , Receptores Depuradores Classe B/genética , Transdução de Sinais , Células THP-1
12.
J Allergy Clin Immunol ; 145(2): 502-517.e5, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31738991

RESUMO

BACKGROUND: Allergic asthma is a chronic inflammatory disorder characterized by airway hyperreactivity (AHR) and driven by TH2 cytokine production. Group 2 innate lymphoid cells (ILC2s) secrete high amounts of TH2 cytokines and contribute to the development of AHR. Autophagy is a cellular degradation pathway that recycles cytoplasmic content. However, the role of autophagy in ILC2s remains to be fully elucidated. OBJECTIVE: We characterized the effects of autophagy deficiency on ILC2 effector functions and metabolic balance. METHODS: ILC2s from autophagy-deficient mice were isolated to evaluate proliferation, apoptosis, cytokine secretion, gene expression and cell metabolism. Also, autophagy-deficient ILC2s were adoptively transferred into Rag-/-GC-/- mice, which were then challenged with IL-33 and assessed for AHR and lung inflammation. RESULTS: We demonstrate that autophagy is extensively used by activated ILC2s to maintain their homeostasis and effector functions. Deletion of the critical autophagy gene autophagy-related 5 (Atg5) resulted in decreased cytokine secretion and increased apoptosis. Moreover, lack of autophagy among ILC2s impaired their ability to use fatty acid oxidation and strikingly promoted glycolysis, as evidenced by our transcriptomic and metabolite analyses. This shift of fuel dependency led to impaired homeostasis and TH2 cytokine production, thus inhibiting the development of ILC2-mediated AHR. Notably, this metabolic reprogramming was also associated with an accumulation of dysfunctional mitochondria, producing excessive reactive oxygen species. CONCLUSION: These findings provide new insights into the metabolic profile of ILC2s and suggest that modulation of fuel dependency by autophagy is a potentially new therapeutic approach to target ILC2-dependent inflammation.


Assuntos
Autofagia/imunologia , Homeostase/imunologia , Imunidade Inata/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Camundongos , Hipersensibilidade Respiratória/imunologia , Hipersensibilidade Respiratória/metabolismo
13.
Cell Rep ; 29(13): 4509-4524.e5, 2019 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-31875557

RESUMO

Group 2 innate lymphoid cells (ILC2s) can initiate pathologic inflammation in allergic asthma by secreting copious amounts of type 2 cytokines, promoting lung eosinophilia and airway hyperreactivity (AHR), a cardinal feature of asthma. We discovered that the TNF/TNFR2 axis is a central immune checkpoint in murine and human ILC2s. ILC2s selectively express TNFR2, and blocking the TNF/TNFR2 axis inhibits survival and cytokine production and reduces ILC2-dependent AHR. The mechanism of action of TNFR2 in ILC2s is through the non-canonical NF-κB pathway as an NF-κB-inducing kinase (NIK) inhibitor blocks the costimulatory effect of TNF-α. Similarly, human ILC2s selectively express TNFR2, and using hILC2s, we show that TNFR2 engagement promotes AHR through a NIK-dependent pathway in alymphoid murine recipients. These findings highlight the role of the TNF/TNFR2 axis in pulmonary ILC2s, suggesting that targeting TNFR2 or relevant signaling is a different strategy for treating patients with ILC2-dependent asthma.


Assuntos
Linfócitos/imunologia , Proteínas Serina-Treonina Quinases/genética , Receptores Tipo II do Fator de Necrose Tumoral/genética , Hipersensibilidade Respiratória/imunologia , Transdução de Sinais/imunologia , Transferência Adotiva , Animais , Sobrevivência Celular , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Humanos , Pulmão/imunologia , Pulmão/patologia , Transfusão de Linfócitos , Linfócitos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , NF-kappa B/genética , NF-kappa B/imunologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/imunologia , Proteínas Serina-Treonina Quinases/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Hipersensibilidade Respiratória/genética , Hipersensibilidade Respiratória/patologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Quinase Induzida por NF-kappaB
14.
Front Immunol ; 10: 2051, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620118

RESUMO

Group 2 Innate lymphoid cells (ILC2) contribute significantly to allergic inflammation. However, the role of microbiota on ILC2s remains to be unraveled. Here we show that short chain fatty acids (SCFAs), such as butyrate, derived from fermentation of dietary fibers by the gut microbiota inhibit pulmonary ILC2 functions and subsequent development of airway hyperreactivity (AHR). We further show that SCFAs modulate GATA3, oxidative phosphorylation, and glycolytic metabolic pathways in pulmonary ILC2s. The observed phenotype is associated with increased IL-17a secretion by lung ILC2s and linked to enhanced neutrophil recruitment to the airways. Finally, we show that butyrate-producing gut bacteria in germ-free mice effectively suppress ILC2-driven AHR. Collectively, our results demonstrate a previously unrecognized role for microbial-derived SCFAs on pulmonary ILC2s in the context of AHR. The data suggest strategies aimed at modulating metabolomics and microbiota in the gut, not only to treat, but to prevent lung inflammation and asthma.


Assuntos
Asma , Ácido Butírico/imunologia , Fibras na Dieta/administração & dosagem , Microbioma Gastrointestinal , Linfócitos/imunologia , Neutrófilos/imunologia , Animais , Asma/imunologia , Asma/microbiologia , Asma/patologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/imunologia , Imunidade Inata/efeitos dos fármacos , Inflamação/imunologia , Inflamação/patologia , Linfócitos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Neutrófilos/patologia
15.
Nat Commun ; 10(1): 713, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755607

RESUMO

Metabolic syndrome is characterized by disturbances in glucose homeostasis and the development of low-grade systemic inflammation, which increase the risk to develop type 2 diabetes mellitus (T2DM). Type-2 innate lymphoid cells (ILC2s) are a recently discovered immune population secreting Th2 cytokines. While previous studies show how ILC2s can play a critical role in the regulation of metabolic homeostasis in the adipose tissue, a therapeutic target capable of modulating ILC2 activation has yet to be identified. Here, we show that GITR, a member of the TNF superfamily, is expressed on both murine and human ILC2s. Strikingly, we demonstrate that GITR engagement of activated, but not naïve, ILC2s improves glucose homeostasis, resulting in both protection against insulin resistance onset and amelioration of established insulin- resistance. Together, these results highlight the critical role of GITR as a novel therapeutic molecule against T2DM and its fundamental role as an immune checkpoint for activated ILC2s.


Assuntos
Diabetes Mellitus Tipo 2/imunologia , Proteína Relacionada a TNFR Induzida por Glucocorticoide/imunologia , Linfócitos/imunologia , Linfócitos/metabolismo , Tecido Adiposo/imunologia , Tecido Adiposo/metabolismo , Animais , Citocinas/imunologia , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Glucose/metabolismo , Homeostase , Humanos , Imunidade Inata , Resistência à Insulina , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th2/metabolismo
16.
J Allergy Clin Immunol ; 139(5): 1468-1477.e2, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27717665

RESUMO

BACKGROUND: Atopic diseases, including asthma, exacerbate type 2 immune responses and involve a number of immune cell types, including regulatory T (Treg) cells and the emerging type 2 innate lymphoid cells (ILC2s). Although ILC2s are potent producers of type 2 cytokines, the regulation of ILC2 activation and function is not well understood. OBJECTIVE: In the present study, for the first time, we evaluate how Treg cells interact with pulmonary ILC2s and control their function. METHODS: ILC2s and Treg cells were evaluated by using in vitro suppression assays, cell-contact assays, and gene expression panels. Also, human ILC2s and Treg cells were adoptively transferred into NOD SCID γC-deficient mice, which were given isotype or anti-inducible T-cell costimulator ligand (ICOSL) antibodies and then challenged with IL-33 and assessed for airway hyperreactivity. RESULTS: We show that induced Treg cells, but not natural Treg cells, effectively suppress the production of the ILC2-driven proinflammatory cytokines IL-5 and IL-13 both in vitro and in vivo. Mechanistically, our data reveal the necessity of inducible T-cell costimulator (ICOS)-ICOS ligand cell contact for Treg cell-mediated ILC2 suppression alongside the suppressive cytokines TGF-ß and IL-10. Using a translational approach, we then demonstrate that human induced Treg cells suppress syngeneic human ILC2s through ICOSL to control airway inflammation in a humanized ILC2 mouse model. CONCLUSION: These findings suggest that peripheral expansion of induced Treg cells can serve as a promising therapeutic target against ILC2-dependent asthma.


Assuntos
Asma/imunologia , Citocinas/imunologia , Linfócitos/imunologia , Animais , Líquido da Lavagem Broncoalveolar/imunologia , Células Cultivadas , Técnicas de Cocultura , Modelos Animais de Doenças , Humanos , Imunidade Inata , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos
17.
Nat Commun ; 7: 13202, 2016 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-27752043

RESUMO

Allergic asthma is a complex and chronic inflammatory disorder that is associated with airway hyperreactivity (AHR) and driven by Th2 cytokine secretion. Type 2 innate lymphoid cells (ILC2s) produce large amounts of Th2 cytokines and contribute to the development of AHR. Here, we show that ILC2s express the α7-nicotinic acetylcholine receptor (α7nAChR), which is thought to have an anti-inflammatory role in several inflammatory diseases. We show that engagement of a specific agonist with α7nAChR on ILC2s reduces ILC2 effector function and represses ILC2-dependent AHR, while decreasing expression of ILC2 key transcription factor GATA-3 and critical inflammatory modulator NF-κB, and reducing phosphorylation of upstream kinase IKKα/ß. Additionally, the specific α7nAChR agonist reduces cytokine production and AHR in a humanized ILC2 mouse model. Collectively, our data suggest that α7nAChR expressed by ILC2s is a potential therapeutic target for the treatment of ILC2-mediated asthma.


Assuntos
Linfócitos/metabolismo , Agonistas Nicotínicos/farmacologia , Hipersensibilidade Respiratória/tratamento farmacológico , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Asma/tratamento farmacológico , Asma/metabolismo , Células Cultivadas , Citocinas/metabolismo , Modelos Animais de Doenças , Humanos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Hipersensibilidade Respiratória/metabolismo
18.
J Immunol ; 193(2): 817-26, 2014 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-24935924

RESUMO

Scavenger receptor class B type I (SR-BI)-deficient mice display reduced survival to endotoxic shock and sepsis. The understanding of the mechanisms underlying SR-BI protection has been hampered by the large spectrum of SR-BI functions and ligands. It notably plays an important role in the liver in high-density lipoprotein metabolism, but it is also thought to participate in innate immunity as a pattern recognition receptor for bacterial endotoxins, such as LPS. In this study, we sought to determine the tissue-specific contribution of SR-BI in the hyperinflammatory response and high mortality rates observed in SR-BI(-/-) mice in endotoxicosis or sepsis. Restoring plasma levels of high-density lipoprotein, which are critical lipoproteins for LPS neutralization, did not improve acute outcomes of LPS injection in SR-BI(-/-) mice. Mice deficient for SR-BI in hepatocytes, endothelial cells, or myeloid cells were not more susceptible to LPS-induced death. However, if SR-BI ablation in hepatocytes led to a moderate increase in systemic inflammatory markers, SR-BI deficiency in myeloid cells was associated with an anti-inflammatory effect. Finally, mice deficient for SR-BI in the adrenal cortex, where the receptor provides lipoprotein-derived cholesterol, had impaired secretion of glucocorticoids in response to stress. When exposed to an endotoxin challenge, these mice exhibited an exacerbated systemic and local inflammatory response, reduced activation of atrophy genes in muscle, and high lethality rate. Furthermore, polymicrobial sepsis induced by cecal ligature and puncture resulted in early death of these animals. Our study clearly demonstrates that corticoadrenal SR-BI is a critical element of the hypothalamic-pituitary-adrenal axis to provide effective glucocorticoid-dependent host defense after an endotoxic shock or bacterial infection.


Assuntos
Córtex Suprarrenal/imunologia , Lipopolissacarídeos/imunologia , Receptores Depuradores Classe B/imunologia , Sepse/imunologia , Choque Séptico/imunologia , Córtex Suprarrenal/metabolismo , Animais , LDL-Colesterol/sangue , LDL-Colesterol/imunologia , LDL-Colesterol/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/imunologia , Células Endoteliais/metabolismo , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/imunologia , Hepatócitos/efeitos dos fármacos , Hepatócitos/imunologia , Hepatócitos/metabolismo , Interleucina-10/sangue , Interleucina-10/imunologia , Interleucina-10/metabolismo , Interleucina-6/sangue , Interleucina-6/imunologia , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia de Fluorescência , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Células Mieloides/efeitos dos fármacos , Células Mieloides/imunologia , Células Mieloides/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Receptores Depuradores Classe B/deficiência , Receptores Depuradores Classe B/genética , Sepse/microbiologia , Sepse/mortalidade , Choque Séptico/microbiologia , Baço/efeitos dos fármacos , Baço/imunologia , Baço/metabolismo , Análise de Sobrevida , Taxa de Sobrevida , Fator de Necrose Tumoral alfa/sangue , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA