Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Micromachines (Basel) ; 14(4)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37420984

RESUMO

This paper describes, in detail, a method that uses flow cytometry to quantitatively characterise the performance of continuous-flow microfluidic devices designed to separate particles. Whilst simple, this approach overcomes many of the issues with the current commonly utilised methods (high-speed fluorescent imaging, or cell counting via either a hemocytometer or a cell counter), as it can accurately assess device performance even in complex, high concentration mixtures in a way that was previously not possible. Uniquely, this approach takes advantage of pulse processing in flow cytometry to allow quantitation of cell separation efficiencies and resulting sample purities on both single cells as well as cell clusters (such as circulating tumour cell (CTC) clusters). Furthermore, it can readily be combined with cell surface phenotyping to measure separation efficiencies and purities in complex cell mixtures. This method will facilitate the rapid development of a raft of continuous flow microfluidic devices, will be helpful in testing novel separation devices for biologically relevant clusters of cells such as CTC clusters, and will provide a quantitative assessment of device performance in complex samples, which was previously impossible.

2.
Cell Rep ; 42(6): 112525, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37243592

RESUMO

Systemic inflammation is established as part of late-stage severe lung disease, but molecular, functional, and phenotypic changes in peripheral immune cells in early disease stages remain ill defined. Chronic obstructive pulmonary disease (COPD) is a major respiratory disease characterized by small-airway inflammation, emphysema, and severe breathing difficulties. Using single-cell analyses we demonstrate that blood neutrophils are already increased in early-stage COPD, and changes in molecular and functional neutrophil states correlate with lung function decline. Assessing neutrophils and their bone marrow precursors in a murine cigarette smoke exposure model identified similar molecular changes in blood neutrophils and precursor populations that also occur in the blood and lung. Our study shows that systemic molecular alterations in neutrophils and their precursors are part of early-stage COPD, a finding to be further explored for potential therapeutic targets and biomarkers for early diagnosis and patient stratification.


Assuntos
Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Humanos , Animais , Camundongos , Neutrófilos , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Pulmão , Inflamação
3.
J Exp Med ; 220(5)2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36828390

RESUMO

Metastatic cancer cells adapt to thrive in secondary organs. To investigate metastatic adaptation, we performed transcriptomic analysis of metastatic and non-metastatic murine breast cancer cells. We found that pleiotrophin (PTN), a neurotrophic cytokine, is a metastasis-associated factor that is expressed highly by aggressive breast cancers. Moreover, elevated PTN in plasma correlated significantly with metastasis and reduced survival of breast cancer patients. Mechanistically, we find that PTN activates NF-κB in cancer cells leading to altered cytokine production, subsequent neutrophil recruitment, and an immune suppressive microenvironment. Consequently, inhibition of PTN, pharmacologically or genetically, reduces the accumulation of tumor-associated neutrophils and reverts local immune suppression, resulting in increased T cell activation and attenuated metastasis. Furthermore, inhibition of PTN significantly enhanced the efficacy of immune checkpoint blockade and chemotherapy in reducing metastatic burden in mice. These findings establish PTN as a previously unrecognized driver of a prometastatic immune niche and thus represents a promising therapeutic target for the treatment of metastatic breast cancer.


Assuntos
Proteínas de Transporte , Neoplasias , Camundongos , Animais , Citocinas/metabolismo , NF-kappa B , Microambiente Tumoral
4.
Cancer Res ; 83(8): 1315-1328, 2023 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-36787115

RESUMO

The inflammatory microenvironment of solid tumors creates a protumorigenic milieu that resembles chronic inflammation akin to a subverted wound healing response. Here, we investigated the effect of converting the tumor microenvironment from a chronically inflamed state to one of acute microbial inflammation by injecting microbial bioparticles directly into tumors. Intratumoral microbial bioparticle injection led to rapid and dramatic changes in the tumor immune composition, the most striking of which was a substantial increase in the presence of activated neutrophils. In situ photoconversion and intravital microscopy indicated that tumor neutrophils transiently switched from sessile producers of VEGF to highly motile neutrophils that clustered to make neutrophil-rich domains in the tumor. The neutrophil clusters remodeled tumor tissue and repressed tumor growth. Single-cell transcriptional analysis of microbe-stimulated neutrophils showed a profound shift in gene expression towards heightened activation and antimicrobial effector function. Microbe-activated neutrophils also upregulated chemokines known to regulate neutrophil and CD8+ T-cell recruitment. Microbial therapy also boosted CD8+ T-cell function and enhanced the therapeutic benefit of checkpoint inhibitor therapy in tumor-bearing mice and provided protection in a model of tumor recurrence. These data indicate that one of the major effector mechanisms of microbial therapy is the conversion of tumor neutrophils from a wound healing to an acutely activated cytotoxic phenotype, highlighting a rationale for broader deployment of microbial therapy in the treatment of solid cancers. SIGNIFICANCE: Intratumoral injection of microbial bioparticles stimulates neutrophil antitumor functions, suggesting pathways for optimizing efficacy of microbial therapies and paving the way for their broader utilization in the clinic.


Assuntos
Neoplasias , Neutrófilos , Camundongos , Animais , Neutrófilos/metabolismo , Neoplasias/genética , Neoplasias/terapia , Neoplasias/metabolismo , Linfócitos T CD8-Positivos , Inflamação/patologia , Fenótipo , Infiltração de Neutrófilos , Microambiente Tumoral
5.
Biosens Bioelectron ; 223: 114966, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36580816

RESUMO

Effective isolation and in-depth analysis of Circulating Tumour Cells (CTCs) are greatly needed in diagnosis, prognosis and monitoring of the therapeutic response of cancer patients but have not been completely fulfilled by conventional approaches. The rarity of CTCs and the lack of reliable biomarkers to distinguish them from peripheral blood cells have remained outstanding challenges for their clinical implementation. Herein, we developed a high throughput Static Droplet Microfluidic (SDM) device with 38,400 chambers, capable of isolating and classifying the number of metabolically active CTCs in peripheral blood at single-cell resolution. Owing to the miniaturisation and compartmentalisation capability of our device, we first demonstrated the ability to precisely measure the lactate production of different types of cancer cells inside 125 pL droplets at single-cell resolution. Furthermore, we compared the metabolomic activity of leukocytes from healthy donors to cancer cells and showed the ability to differentiate them. To further prove the clinical relevance, we spiked cancer cell lines in human healthy blood and showed the possibility to detect the cancer cells from leukocytes. Lastly, we tested the workflow on 8 preclinical mammary mouse models including syngeneic 67NR (non-metastatic) and 4T1.2 (metastatic) models with Triple-Negative Breast Cancer (TNBC) as well as transgenic mouses (12-week-old MMTV-PyMT). The results have shown the ability to precisely distinguish metabolically active CTCs from the blood using the proposed SDM device. The workflow is simple and robust which can eliminate the need for specialised equipment and expertise required for single-cell analysis of CTCs and facilitate on-site metabolic screening of cancer cells.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Células Neoplásicas Circulantes , Humanos , Camundongos , Animais , Microfluídica/métodos , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Células Neoplásicas Circulantes/patologia , Separação Celular/métodos
7.
Nat Commun ; 13(1): 4587, 2022 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933466

RESUMO

The tumour stroma, and in particular the extracellular matrix (ECM), is a salient feature of solid tumours that plays a crucial role in shaping their progression. Many desmoplastic tumours including breast cancer involve the significant accumulation of type I collagen. However, recently it has become clear that the precise distribution and organisation of matrix molecules such as collagen I is equally as important in the tumour as their abundance. Cancer-associated fibroblasts (CAFs) coexist within breast cancer tissues and play both pro- and anti-tumourigenic roles through remodelling the ECM. Here, using temporal proteomic profiling of decellularized tumours, we interrogate the evolving matrisome during breast cancer progression. We identify 4 key matrisomal clusters, and pinpoint collagen type XII as a critical component that regulates collagen type I organisation. Through combining our proteomics with single-cell transcriptomics, and genetic manipulation models, we show how CAF-secreted collagen XII alters collagen I organisation to create a pro-invasive microenvironment supporting metastatic dissemination. Finally, we show in patient cohorts that collagen XII may represent an indicator of breast cancer patients at high risk of metastatic relapse.


Assuntos
Neoplasias da Mama , Colágeno Tipo XII/metabolismo , Metástase Neoplásica , Microambiente Tumoral , Neoplasias da Mama/patologia , Colágeno , Colágeno Tipo I , Matriz Extracelular/patologia , Feminino , Humanos , Metástase Neoplásica/patologia , Recidiva Local de Neoplasia/patologia , Proteômica
8.
Adv Sci (Weinh) ; 9(21): e2103332, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35611998

RESUMO

To fully investigate cellular responses to stimuli and perturbations within tissues, it is essential to replicate the complex molecular interactions within the local microenvironment of cellular niches. Here, the authors introduce Alginate-based tissue engineering (ALTEN), a biomimetic tissue platform that allows ex vivo analysis of explanted tissue biopsies. This method preserves the original characteristics of the source tissue's cellular milieu, allowing multiple and diverse cell types to be maintained over an extended period of time. As a result, ALTEN enables rapid and faithful characterization of perturbations across specific cell types within a tissue. Importantly, using single-cell genomics, this approach provides integrated cellular responses at the resolution of individual cells. ALTEN is a powerful tool for the analysis of cellular responses upon exposure to cytotoxic agents and immunomodulators. Additionally, ALTEN's scalability using automated microfluidic devices for tissue encapsulation and subsequent transport, to enable centralized high-throughput analysis of samples gathered by large-scale multicenter studies, is shown.


Assuntos
Dispositivos Lab-On-A-Chip , Engenharia Tecidual , Alginatos , Biomimética , Comunicação Celular , Engenharia Tecidual/métodos
9.
Am J Respir Crit Care Med ; 206(6): 712-729, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35549656

RESUMO

Rationale: Patients with chronic obstructive pulmonary disease (COPD) develop more severe coronavirus disease (COVID-19); however, it is unclear whether they are more susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and what mechanisms are responsible for severe disease. Objectives: To determine whether SARS-CoV-2 inoculated primary bronchial epithelial cells (pBECs) from patients with COPD support greater infection and elucidate the effects and mechanisms involved. Methods: We performed single-cell RNA sequencing analysis on differentiated pBECs from healthy subjects and patients with COPD 7 days after SARS-CoV-2 inoculation. We correlated changes with viral titers, proinflammatory responses, and IFN production. Measurements and Main Results: Single-cell RNA sequencing revealed that COPD pBECs had 24-fold greater infection than healthy cells, which was supported by plaque assays. Club/goblet and basal cells were the predominant populations infected and expressed mRNAs involved in viral replication. Proteases involved in SARS-CoV-2 entry/infection (TMPRSS2 and CTSB) were increased, and protease inhibitors (serpins) were downregulated more so in COPD. Inflammatory cytokines linked to COPD exacerbations and severe COVID-19 were increased, whereas IFN responses were blunted. Coexpression analysis revealed a prominent population of club/goblet cells with high type 1/2 IFN responses that were important drivers of immune responses to infection in both healthy and COPD pBECs. Therapeutic inhibition of proteases and inflammatory imbalances reduced viral titers and cytokine responses, particularly in COPD pBECs. Conclusions: COPD pBECs are more susceptible to SARS-CoV-2 infection because of increases in coreceptor expression and protease imbalances and have greater inflammatory responses. A prominent cluster of IFN-responsive club/goblet cells emerges during infection, which may be important drivers of immunity. Therapeutic interventions suppress SARS-CoV-2 replication and consequent inflammation.


Assuntos
COVID-19 , Doença Pulmonar Obstrutiva Crônica , Serpinas , Citocinas , Células Epiteliais , Humanos , Peptídeo Hidrolases , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , SARS-CoV-2 , Análise de Sequência de RNA , Serpinas/farmacologia , Serpinas/uso terapêutico
10.
Breast Cancer Res ; 24(1): 31, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35505346

RESUMO

BACKGROUND: The interferon response can influence the primary and metastatic activity of breast cancers and can interact with checkpoint immunotherapy to modulate its effects. Using N-ethyl-N-nitrosourea mutagenesis, we found a mouse with an activating mutation in oligoadenylate synthetase 2 (Oas2), a sensor of viral double stranded RNA, that resulted in an interferon response and prevented lactation in otherwise healthy mice. METHODS: To determine if sole activation of Oas2 could alter the course of mammary cancer, we combined the Oas2 mutation with the MMTV-PyMT oncogene model of breast cancer and examined disease progression and the effects of checkpoint immunotherapy using Kaplan-Meier survival analysis with immunohistochemistry and flow cytometry. RESULTS: Oas2 mutation prevented pregnancy from increasing metastases to lung. Checkpoint immunotherapy with antibodies against programmed death-ligand 1 was more effective when the Oas2 mutation was present. CONCLUSIONS: These data establish OAS2 as a therapeutic target for agents designed to reduce metastases and increase the effectiveness of checkpoint immunotherapy.


Assuntos
2',5'-Oligoadenilato Sintetase , Neoplasias da Mama , 2',5'-Oligoadenilato Sintetase/genética , Nucleotídeos de Adenina , Animais , Neoplasias da Mama/genética , Feminino , Humanos , Interferons , Ligases , Camundongos , Oligorribonucleotídeos , Gravidez
12.
J Clin Invest ; 132(7)2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35192545

RESUMO

The tumor microenvironment (TME) is reprogrammed by cancer cells and participates in all stages of tumor progression. The contribution of stromal cells to the reprogramming of the TME is not well understood. Here, we provide evidence of the role of the cytokine oncostatin M (OSM) as central node for multicellular interactions between immune and nonimmune stromal cells and the epithelial cancer cell compartment. OSM receptor (OSMR) deletion in a multistage breast cancer model halted tumor progression. We ascribed causality to the stromal function of the OSM axis by demonstrating reduced tumor burden of syngeneic tumors implanted in mice lacking OSMR. Single-cell and bioinformatic analysis of murine and human breast tumors revealed that OSM expression was restricted to myeloid cells, whereas OSMR was detected predominantly in fibroblasts and, to a lower extent, cancer cells. Myeloid-derived OSM reprogrammed fibroblasts to a more contractile and tumorigenic phenotype and elicited the secretion of VEGF and proinflammatory chemokines CXCL1 and CXCL16, leading to increased myeloid cell recruitment. Collectively, our data support the notion that the stromal OSM/OSMR axis reprograms the immune and nonimmune microenvironment and plays a key role in breast cancer progression.


Assuntos
Neoplasias da Mama , Microambiente Tumoral , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Camundongos , Oncostatina M/genética , Oncostatina M/metabolismo , Transdução de Sinais
13.
Front Oncol ; 11: 782766, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917509

RESUMO

Over 90% of potential anti-cancer drug candidates results in translational failures in clinical trials. The main reason for this failure can be attributed to the non-accurate pre-clinical models that are being currently used for drug development and in personalised therapies. To ensure that the assessment of drug efficacy and their mechanism of action have clinical translatability, the complexity of the tumor microenvironment needs to be properly modelled. 3D culture models are emerging as a powerful research tool that recapitulates in vivo characteristics. Technological advancements in this field show promising application in improving drug discovery, pre-clinical validation, and precision medicine. In this review, we discuss the significance of the tumor microenvironment and its impact on therapy success, the current developments of 3D culture, and the opportunities that advancements that in vitro technologies can provide to improve cancer therapeutics.

14.
Nat Immunol ; 22(12): 1538-1550, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34795444

RESUMO

The signals driving the adaptation of type 2 dendritic cells (DC2s) to diverse peripheral environments remain mostly undefined. We show that differentiation of CD11blo migratory DC2s-a DC2 population unique to the dermis-required IL-13 signaling dependent on the transcription factors STAT6 and KLF4, whereas DC2s in lung and small intestine were STAT6-independent. Similarly, human DC2s in skin expressed an IL-4 and IL-13 gene signature that was not found in blood, spleen and lung DCs. In mice, IL-13 was secreted homeostatically by dermal innate lymphoid cells and was independent of microbiota, TSLP or IL-33. In the absence of IL-13 signaling, dermal DC2s were stable in number but remained CD11bhi and showed defective activation in response to allergens, with diminished ability to support the development of IL-4+GATA3+ helper T cells (TH), whereas antifungal IL-17+RORγt+ TH cells were increased. Therefore, homeostatic IL-13 fosters a noninflammatory skin environment that supports allergic sensitization.


Assuntos
Comunicação Celular , Diferenciação Celular , Interleucina-13/metabolismo , Células de Langerhans/metabolismo , Pele/metabolismo , Células Th17/metabolismo , Células Th2/metabolismo , Alérgenos/farmacologia , Animais , Antígeno CD11b/genética , Antígeno CD11b/metabolismo , Células Cultivadas , Bases de Dados Genéticas , Humanos , Interleucina-13/genética , Células de Langerhans/efeitos dos fármacos , Células de Langerhans/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fator de Transcrição STAT6/genética , Fator de Transcrição STAT6/metabolismo , Transdução de Sinais , Pele/citologia , Pele/efeitos dos fármacos , Pele/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Células Th2/efeitos dos fármacos , Células Th2/imunologia , Transcriptoma
15.
STAR Protoc ; 2(4): 100841, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34585168

RESUMO

Cell preparation with a high rate of viable cells is required to obtain reliable single-cell transcriptomic and epigenomic data. This protocol describes a technique for digestion and single-cell isolation from mouse mammary tumors to achieve ∼90% of viable cells, which can be subsequently processed in a diverse array of high-throughput single-cell "omic platforms," both in an unbiased manner or after selection of a specific cell population. For complete details on the use and execution of this protocol, please refer to Valdes-Mora et al. (2021).


Assuntos
Neoplasias da Mama , Animais , Neoplasias da Mama/genética , Separação Celular/métodos , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Análise de Célula Única/métodos , Suspensões
16.
Adv Sci (Weinh) ; 8(21): e2102418, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34494727

RESUMO

Mammary tumor organoids have become a promising in vitro model for drug screening and personalized medicine. However, the dependency on the basement membrane extract (BME) as the growth matrices limits their comprehensive application. In this work, mouse mammary tumor organoids are established by encapsulating tumor pieces in non-adhesive alginate. High-throughput generation of organoids in alginate microbeads is achieved utilizing microfluidic droplet technology. Tumor pieces within the alginate microbeads developed both luminal- and solid-like structures and displayed a high similarity to the original fresh tumor in cellular phenotypes and lineages. The mechanical forces of the luminal organoids in the alginate capsules are analyzed with the theory of the thick-wall pressure vessel (TWPV) model. The luminal pressure of the organoids increase with the lumen growth and can reach 2 kPa after two weeks' culture. Finally, the mammary tumor organoids are treated with doxorubicin and latrunculin A to evaluate their application as a drug screening platform. It is found that the drug response is related to the luminal size and pressures of organoids. This high-throughput culture for mammary tumor organoids may present a promising tool for preclinical drug target validation and personalized medicine.


Assuntos
Alginatos/química , Ensaios de Triagem em Larga Escala/métodos , Neoplasias Mamárias Animais/patologia , Animais , Antineoplásicos/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Técnicas de Cultura de Células/instrumentação , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/efeitos dos fármacos , Dimetilpolisiloxanos/química , Doxorrubicina/farmacologia , Feminino , Dispositivos Lab-On-A-Chip , Neoplasias Mamárias Animais/metabolismo , Camundongos , Organoides/citologia , Organoides/efeitos dos fármacos , Organoides/metabolismo , Tiazolidinas/farmacologia , Células Tumorais Cultivadas
17.
Cell Rep ; 35(2): 108945, 2021 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-33852842

RESUMO

Basal breast cancer is associated with younger age, early relapse, and a high mortality rate. Here, we use unbiased droplet-based single-cell RNA sequencing (RNA-seq) to elucidate the cellular basis of tumor progression during the specification of the basal breast cancer subtype from the luminal progenitor population in the MMTV-PyMT (mouse mammary tumor virus-polyoma middle tumor-antigen) mammary tumor model. We find that basal-like cancer cells resemble the alveolar lineage that is specified upon pregnancy and encompass the acquisition of an aberrant post-lactation developmental program of involution that triggers remodeling of the tumor microenvironment and metastatic dissemination. This involution mimicry is characterized by a highly interactive multicellular network, with involution cancer-associated fibroblasts playing a pivotal role in extracellular matrix remodeling and immunosuppression. Our results may partially explain the increased risk and poor prognosis of breast cancer associated with childbirth.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Carcinoma Basocelular/genética , Glândulas Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/genética , Transcriptoma , Animais , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Fibroblastos Associados a Câncer/patologia , Carcinoma Basocelular/metabolismo , Carcinoma Basocelular/patologia , Linhagem da Célula/genética , Quimiocina CXCL12/genética , Quimiocina CXCL12/metabolismo , Cadeia alfa 1 do Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I/metabolismo , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Glândulas Mamárias Animais/patologia , Glândulas Mamárias Animais/virologia , Neoplasias Mamárias Animais/metabolismo , Neoplasias Mamárias Animais/patologia , Vírus do Tumor Mamário do Camundongo/crescimento & desenvolvimento , Vírus do Tumor Mamário do Camundongo/patogenicidade , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Camundongos , Metástase Neoplásica , Gravidez , Análise de Célula Única , Microambiente Tumoral/genética
18.
19.
Cytometry A ; 97(10): 1007-1016, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32794624

RESUMO

In the past few years, the rapid development of single-cell analysis techniques has allowed for increasingly in-depth analysis of DNA, RNA, protein, and epigenetic states, at the level of the individual cell. This unprecedented characterization ability has been enabled through the combination of cytometry, microfluidics, genomics, and informatics. Although traditionally discrete, when properly integrated, these fields create the synergistic field of Genomic Cytometry. In this review, we look at the individual methods that together gave rise to the broad field of Genomic Cytometry. We further outline the basic concepts that drive the field and provide a framework to understand this increasingly complex, technology-intensive space. Thus, we introduce Genomic Cytometry as an emerging field and propose that synergistic rationalization of disparate modalities of cytometry, microfluidics, genomics, and informatics under one banner will enable massive leaps forward in the understanding of complex biology. © 2020 International Society for Advancement of Cytometry.


Assuntos
Genoma , Genômica , Microfluídica , Análise de Célula Única
20.
Cells ; 9(3)2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-32121014

RESUMO

The emergence of immunotherapy has been an astounding breakthrough in cancer treatments. In particular, immune checkpoint inhibitors, targeting PD-1 and CTLA-4, have shown remarkable therapeutic outcomes. However, response rates from immunotherapy have been reported to be varied, with some having pronounced success and others with minimal to no clinical benefit. An important aspect associated with this discrepancy in patient response is the immune-suppressive effects elicited by the tumour microenvironment (TME). Immune suppression plays a pivotal role in regulating cancer progression, metastasis, and reducing immunotherapy success. Most notably, myeloid-derived suppressor cells (MDSC), a heterogeneous population of immature myeloid cells, have potent mechanisms to inhibit T-cell and NK-cell activity to promote tumour growth, development of the pre-metastatic niche, and contribute to resistance to immunotherapy. Accumulating research indicates that MDSC can be a therapeutic target to alleviate their pro-tumourigenic functions and immunosuppressive activities to bolster the efficacy of checkpoint inhibitors. In this review, we provide an overview of the general immunotherapeutic approaches and discuss the characterisation, expansion, and activities of MDSCs with the current treatments used to target them either as a single therapeutic target or synergistically in combination with immunotherapy.


Assuntos
Células Supressoras Mieloides/patologia , Neoplasias/terapia , Animais , Carcinogênese/patologia , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Terapia de Imunossupressão , Imunoterapia , Neoplasias/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA