Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 96(10): e0037922, 2022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35499323

RESUMO

HIV integrates into the host genome, creating a viral reservoir of latently infected cells that persists despite effective antiretroviral treatment. CD4-positive (CD4+) T cells are the main contributors to the HIV reservoir. CD4+ T cells are a heterogeneous population, and the mechanisms of latency establishment in the different subsets, as well as their contribution to the reservoir, are still unclear. In this study, we analyzed HIV latency establishment in different CD4+ T cell subsets stimulated with interleukin 15 (IL-15), a cytokine that increases both susceptibility to infection and reactivation from latency. Using a dual-reporter virus that allows discrimination between latent and productive infection at the single-cell level, we found that IL-15-treated primary human CD4+ T naive and CD4+ T stem cell memory (TSCM) cells are less susceptible to HIV infection than CD4+ central memory (TCM), effector memory (TEM), and transitional memory (TTM) cells but are also more likely to harbor transcriptionally silent provirus. The propensity of these subsets to harbor latent provirus compared to the more differentiated memory subsets was independent of differential expression of pTEFb components. Microscopy analysis of NF-κB suggested that CD4+ T naive cells express smaller amounts of nuclear NF-κB than the other subsets, partially explaining the inefficient long terminal repeat (LTR)-driven transcription. On the other hand, CD4+ TSCM cells display similar levels of nuclear NF-κB to CD4+ TCM, CD4+ TEM, and CD4+ TTM cells, indicating the availability of transcription initiation and elongation factors is not solely responsible for the inefficient HIV gene expression in the CD4+ TSCM subset. IMPORTANCE The formation of a latent reservoir is the main barrier to HIV cure. Here, we investigated how HIV latency is established in different CD4+ T cell subsets in the presence of IL-15, a cytokine that has been shown to efficiently induce latency reversal. We observed that, even in the presence of IL-15, the less differentiated subsets display lower levels of productive HIV infection than the more differentiated subsets. These differences were not related to different expression of pTEFb, and modest differences in NF-κB were observed for CD4+ T naive cells only, implying the involvement of other mechanisms. Understanding the molecular basis of latency establishment in different CD4+ T cell subsets might be important for tailoring specific strategies to reactivate HIV transcription in all the CD4+ T subsets that compose the latent reservoir.


Assuntos
Linfócitos T CD4-Positivos , Infecções por HIV , Interleucina-15 , Latência Viral , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1 , Humanos , Interleucina-15/farmacologia , NF-kappa B/metabolismo , Provírus , Subpopulações de Linfócitos T/efeitos dos fármacos , Subpopulações de Linfócitos T/virologia
2.
Lancet Reg Health Eur ; 13: 100287, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34961855

RESUMO

BACKGROUND: Vaccines against COVID-19 are a powerful tool to control the current SARS-CoV-2 pandemic. A thorough description of their immunogenicity among people living with HIV (PLWHIV) is necessary. We aimed to assess the immunogenicity of the mRNA-1273 vaccine among PLWHIV. METHODS: In this prospective cohort, adult PLWHIV outpatients were enrolled during the Italian vaccination campaign. Enrolment was allowed irrespective of ongoing combination antiretroviral therapy (ART), plasma HIV viral load and CD4+ T cell count. A two-dose regimen of mRNA-1273, with administrations performed 28 days apart, was employed. The primary outcomes were anti-spike (anti-S) antibody titres and neutralising antibody activity, assessed 28 days after completing the vaccination schedule. A convenient sample of individuals not affected by HIV was also collected to serve as control (referred as healthy-donors, HDs). FINDINGS: We enrolled 71 PLWHIV, mostly male (84·5%), with a mean age of 47 years, a median CD4+ T cell count of 747·0 cells per µL and a median HIV viral load <50 copies/mL. COVID-19-experienced PLWHIV displayed higher anti-S antibody titres (p=0·0007) and neutralising antibody activity in sera (p=0·0007) than COVID-19-naïve PLWHIV. When stratified according to CD4+ T cell count (<350 cells/µL, 350-500 cells/µL, >500 cells/µL), anti-S antibody titres (6/71, median 2173 U/mL [IQR 987-4109]; 7/71, 5763 IU/mL [IQR 4801->12500]; 58/71, 2449 U/mL [IQR 1524-5704]) were not lower to those observed among HDs (10, median 1425 U/mL [IQR 599-6131]). In addition, neutralising antibody activity, stratified according to the CD4+ T cell count (6/71, median 1314 [IQR 606-2477]; 7/71, 3329 IU/mL [IQR 1905-10508]; 58/71, 1227 U/mL [IQR 761-3032]), was like those displayed by HDs (10, median 2112 U/mL [IQR 719-8889]). INTERPRETATION: In our cohort of PLWHIV with well-controlled ART, stable viral suppression and robust CD4+ T cell count, inoculation with mRNA-1273 vaccine given 4 weeks apart produced detectable humoral immune response, similar to individuals without HIV infection, supporting vaccination in PLWHIV. FUNDING: This study was partially supported by Italian Ministry of Health Ricerca Corrente 2021, by Intesa San Paolo COVID-19 emergency 2020 funds, and by Fondazione Cariplo Grant (INNATE-CoV).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA