Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Virol ; 98(5): e0190123, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38629840

RESUMO

Many viruses inhibit general host gene expression to limit innate immune responses and gain preferential access to the cellular translational apparatus for their protein synthesis. This process is known as host shutoff. Influenza A viruses (IAVs) encode two host shutoff proteins: nonstructural protein 1 (NS1) and polymerase acidic X (PA-X). NS1 inhibits host nuclear pre-messenger RNA maturation and export, and PA-X is an endoribonuclease that preferentially cleaves host spliced nuclear and cytoplasmic messenger RNAs. Emerging evidence suggests that in circulating human IAVs NS1 and PA-X co-evolve to ensure optimal magnitude of general host shutoff without compromising viral replication that relies on host cell metabolism. However, the functional interplay between PA-X and NS1 remains unexplored. In this study, we sought to determine whether NS1 function has a direct effect on PA-X activity by analyzing host shutoff in A549 cells infected with wild-type or mutant IAVs with NS1 effector domain deletion. This was done using conventional quantitative reverse transcription polymerase chain reaction techniques and direct RNA sequencing using nanopore technology. Our previous research on the molecular mechanisms of PA-X function identified two prominent features of IAV-infected cells: nuclear accumulation of cytoplasmic poly(A) binding protein (PABPC1) and increase in nuclear poly(A) RNA abundance relative to the cytoplasm. Here we demonstrate that NS1 effector domain function augments PA-X host shutoff and is necessary for nuclear PABPC1 accumulation. By contrast, nuclear poly(A) RNA accumulation is not dependent on either NS1 or PA-X-mediated host shutoff and is accompanied by nuclear retention of viral transcripts. Our study demonstrates for the first time that NS1 and PA-X may functionally interact in mediating host shutoff.IMPORTANCERespiratory viruses including the influenza A virus continue to cause annual epidemics with high morbidity and mortality due to the limited effectiveness of vaccines and antiviral drugs. Among the strategies evolved by viruses to evade immune responses is host shutoff-a general blockade of host messenger RNA and protein synthesis. Disabling influenza A virus host shutoff is being explored in live attenuated vaccine development as an attractive strategy for increasing their effectiveness by boosting antiviral responses. Influenza A virus encodes two proteins that function in host shutoff: the nonstructural protein 1 (NS1) and the polymerase acidic X (PA-X). We and others have characterized some of the NS1 and PA-X mechanisms of action and the additive effects that these viral proteins may have in ensuring the blockade of host gene expression. In this work, we examined whether NS1 and PA-X functionally interact and discovered that NS1 is required for PA-X to function effectively. This work significantly advances our understanding of influenza A virus host shutoff and identifies new potential targets for therapeutic interventions against influenza and further informs the development of improved live attenuated vaccines.


Assuntos
Vírus da Influenza A , Proteínas não Estruturais Virais , Humanos , Células A549 , Interações Hospedeiro-Patógeno , Vírus da Influenza A/genética , Influenza Humana/virologia , Influenza Humana/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas não Estruturais Virais/metabolismo , Proteínas não Estruturais Virais/genética , Replicação Viral , Interações Hospedeiro-Parasita
2.
Proc Natl Acad Sci U S A ; 120(49): e2306381120, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38019867

RESUMO

Inteins are self-splicing protein elements found in viruses and all three domains of life. How the DNA encoding these selfish elements spreads within and between genomes is poorly understood, particularly in eukaryotes where inteins are scarce. Here, we show that the nuclear genomes of three strains of Anaeramoeba encode between 45 and 103 inteins, in stark contrast to four found in the most intein-rich eukaryotic genome described previously. The Anaeramoeba inteins reside in a wide range of proteins, only some of which correspond to intein-containing proteins in other eukaryotes, prokaryotes, and viruses. Our data also suggest that viruses have contributed to the spread of inteins in Anaeramoeba and the colonization of new alleles. The persistence of Anaeramoeba inteins might be partly explained by intragenomic movement of intein-encoding regions from gene to gene. Our intein dataset greatly expands the spectrum of intein-containing proteins and provides insights into the evolution of inteins in eukaryotes.


Assuntos
Inteínas , Processamento de Proteína , Inteínas/genética , Eucariotos/genética , Proteínas/genética , Genoma
3.
Curr Biol ; 33(23): 5199-5207.e4, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-37913769

RESUMO

Viruses are the most abundant biological entities in the world's oceans, where they play important ecological and biogeochemical roles. Metagenomics is revealing new groups of eukaryotic viruses, although disconnected from known hosts. Among these are the recently described mirusviruses, which share some similarities with herpesviruses.1 50 years ago, "herpes-type" viral particles2 were found in a thraustochytrid member of the labyrinthulomycetes, a diverse group of abundant and ecologically important marine eukaryotes,3,4 but could not be further characterized by methods then available. Long-read sequencing has allowed us to connect the biology of mirusviruses and thraustochytrids. We sequenced the genome of the genetically tractable model thraustochytrid Aurantiochytrium limacinum ATCC MYA-1381 and found that its 26 linear chromosomes have an extraordinary configuration. Subtelomeric ribosomal DNAs (rDNAs) found at all chromosome ends are interspersed with long repeated sequence elements denoted as long repeated-telomere and rDNA spacers (LORE-TEARS). We identified two genomic elements that are related to mirusvirus genomes. The first is a ∼300-kbp episome (circular element 1 [CE1]) present at a high copy number. Strikingly, the second, distinct, mirusvirus-like element is integrated between two sets of rDNAs and LORE-TEARS at the left end of chromosome 15 (LE-Chr15). Similar to metagenomically derived mirusviruses, these putative A. limacinum mirusviruses have a virion module related to that of herpesviruses along with an informational module related to nucleocytoplasmic large DNA viruses (NCLDVs). CE1 and LE-Chr15 bear striking similarities to episomal and endogenous latent forms of herpesviruses, respectively, and open new avenues of research into marine virus-host interactions.


Assuntos
Vírus , DNA Ribossômico , Genoma , Heterocromatina , Eucariotos , Telômero , Filogenia
5.
Nat Commun ; 12(1): 6003, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34650064

RESUMO

Cells replicate and segregate their DNA with precision. Previous studies showed that these regulated cell-cycle processes were present in the last eukaryotic common ancestor and that their core molecular parts are conserved across eukaryotes. However, some metamonad parasites have secondarily lost components of the DNA processing and segregation apparatuses. To clarify the evolutionary history of these systems in these unusual eukaryotes, we generated a genome assembly for the free-living metamonad Carpediemonas membranifera and carried out a comparative genomics analysis. Here, we show that parasitic and free-living metamonads harbor an incomplete set of proteins for processing and segregating DNA. Unexpectedly, Carpediemonas species are further streamlined, lacking the origin recognition complex, Cdc6 and most structural kinetochore subunits. Carpediemonas species are thus the first known eukaryotes that appear to lack this suite of conserved complexes, suggesting that they likely rely on yet-to-be-discovered or alternative mechanisms to carry out these fundamental processes.


Assuntos
Evolução Biológica , Eucariotos/genética , Genoma , Genômica , Animais , DNA/metabolismo , Células Eucarióticas/metabolismo , Microbiologia , Parasitos/genética , Proteínas/genética , Proteínas/metabolismo
6.
Curr Biol ; 30(24): R1469-R1471, 2020 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-33352125

RESUMO

A new metagenomics study has shown that marine viruses recently acquired genes encoding light-gated ion channels from green algae. These so-called channelrhodopsin genes may allow the viruses to manipulate the swimming behavior of the algae they infect.


Assuntos
Clorófitas , Vírus Gigantes , Ânions , Channelrhodopsins , Clorófitas/genética , Transferência Genética Horizontal , Vírus Gigantes/metabolismo , Rodopsina/genética , Rodopsina/metabolismo
7.
Trends Microbiol ; 28(6): 428-430, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32396823

RESUMO

Phagocytosis - cell ingestion - is an important process confined to eukaryotes. Or is it? Shiratori et al. have discovered the existence of phagocytosis in a planctomycete bacterium, raising new questions about the significance of phagotrophy beyond the realm of eukaryotic life.


Assuntos
Bactérias , Eucariotos , Células Eucarióticas , Fagocitose
8.
J Virol ; 91(14)2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28446675

RESUMO

Chrysochromulina ericina virus CeV-01B (CeV) was isolated from Norwegian coastal waters in 1998. Its icosahedral particle is 160 nm in diameter and encloses a 474-kb double-stranded DNA (dsDNA) genome. This virus, although infecting a microalga (the haptophyceae Haptolina ericina, formerly Chrysochromulina ericina), is phylogenetically related to members of the Mimiviridae family, initially established with the acanthamoeba-infecting mimivirus and megavirus as prototypes. This family was later split into two genera (Mimivirus and Cafeteriavirus) following the characterization of a virus infecting the heterotrophic stramenopile Cafeteria roenbergensis (CroV). CeV, as well as two of its close relatives, which infect the unicellular photosynthetic eukaryotes Phaeocystis globosa (Phaeocystis globosa virus [PgV]) and Aureococcus anophagefferens (Aureococcus anophagefferens virus [AaV]), are currently unclassified by the International Committee on Viral Taxonomy (ICTV). The detailed comparative analysis of the CeV genome presented here confirms the phylogenetic affinity of this emerging group of microalga-infecting viruses with the Mimiviridae but argues in favor of their classification inside a distinct clade within the family. Although CeV, PgV, and AaV share more common features among them than with the larger Mimiviridae, they also exhibit a large complement of unique genes, attesting to their complex evolutionary history. We identified several gene fusion events and cases of convergent evolution involving independent lateral gene acquisitions. Finally, CeV possesses an unusual number of inteins, some of which are closely related despite being inserted in nonhomologous genes. This appears to contradict the paradigm of allele-specific inteins and suggests that the Mimiviridae are especially efficient in spreading inteins while enlarging their repertoire of homing genes.IMPORTANCE Although it infects the microalga Chrysochromulina ericina, CeV is more closely related to acanthamoeba-infecting viruses of the Mimiviridae family than to any member of the Phycodnaviridae, the ICTV-approved family historically including all alga-infecting large dsDNA viruses. CeV, as well as its relatives that infect the microalgae Phaeocystic globosa (PgV) and Aureococcus anophagefferens (AaV), remains officially unclassified and a source of confusion in the literature. Our comparative analysis of the CeV genome in the context of this emerging group of alga-infecting viruses suggests that they belong to a distinct clade within the established Mimiviridae family. The presence of a large number of unique genes as well as specific gene fusion events, evolutionary convergences, and inteins integrated at unusual locations document the complex evolutionary history of the CeV lineage.


Assuntos
Evolução Molecular , Genoma Viral , Mimiviridae/classificação , Mimiviridae/genética , Phycodnaviridae/classificação , Phycodnaviridae/genética , Filogenia , Análise por Conglomerados , Análise de Sequência de DNA , Homologia de Sequência
9.
Viruses ; 9(1)2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-28117696

RESUMO

The nucleocytoplasmic large DNA viruses (NCLDV) are a group of extremely complex double-stranded DNA viruses, which are major parasites of a variety of eukaryotes. Recent studies showed that certain eukaryotes contain fragments of NCLDV DNA integrated in their genome, when surprisingly many of these organisms were not previously shown to be infected by NCLDVs. We performed an update survey of NCLDV genes hidden in eukaryotic sequences to measure the incidence of this phenomenon in common public sequence databases. A total of 66 eukaryotic genomic or transcriptomic datasets-many of which are from algae and aquatic protists-contained at least one of the five most consistently conserved NCLDV core genes. Phylogenetic study of the eukaryotic NCLDV-like sequences identified putative new members of already recognized viral families, as well as members of as yet unknown viral clades. Genomic evidence suggested that most of these sequences resulted from viral DNA integrations rather than contaminating viruses. Furthermore, the nature of the inserted viral genes helped predicting original functional capacities of the donor viruses. These insights confirm that genomic insertions of NCLDV DNA are common in eukaryotes and can be exploited to delineate the contours of NCLDV biodiversity.


Assuntos
Biodiversidade , Eucariotos/genética , Eucariotos/virologia , Vírus Gigantes/classificação , Vírus Gigantes/genética , Genômica , Recombinação Genética
10.
Curr Opin Virol ; 17: 130-137, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-27088734

RESUMO

The unicellular eukaryotes (also called protists) that inhabit the contemporary oceans have large impacts on major biogeochemical cycles. Populations of oceanic protists are to a large extent regulated by their viral parasites, especially nucleocytoplasmic large DNA viruses (NCLDVs). NCLDVs can themselves be the prey of smaller viruses called virophages and can also be infected by transposable elements termed transpovirons. These entangled parasitisms have fostered the emergence of sophisticated infection and defence strategies. In addition persistent contact has facilitated the exchange of genes between different parties. Recent advances shed light on the strategies that govern such microbial wars. Endogenous virophage-like elements found in the genome of a marine alga could for instance provide the host acquired immunity against NCLDVs. In return, it was recently speculated that virophage sequences can be hijacked by NCLDVs and used as genetic weapons against virophages.


Assuntos
Vírus de DNA/fisiologia , Eucariotos/virologia , Evolução Molecular , Vírus Gigantes/fisiologia , Virófagos/fisiologia , Vírus de DNA/genética , DNA Viral/genética , Genoma Viral , Vírus Gigantes/genética , Interações Hospedeiro-Patógeno , Filogenia , Virófagos/genética
11.
Genome Announc ; 3(6)2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26634761

RESUMO

We report the complete genome sequence of CeV-01B, a large double-stranded DNA virus infecting the unicellular marine phytoplankton Haptolina (formerly Chrysochromulina) ericina. CeV-01B and its closest relative Phaeocystis globosa virus define an emerging subclade of the Megaviridae family with smaller genomes and particles than the originally described giant Mimiviridae infecting Acanthamoeba.

12.
Proc Natl Acad Sci U S A ; 112(38): E5318-26, 2015 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-26305943

RESUMO

Virophages are recently discovered double-stranded DNA virus satellites that prey on giant viruses (nucleocytoplasmic large DNA viruses; NCLDVs), which are themselves parasites of unicellular eukaryotes. This coupled parasitism can result in the indirect control of eukaryotic cell mortality by virophages. However, the details of such tripartite relationships remain largely unexplored. We have discovered ∼300 predicted genes of putative virophage origin in the nuclear genome of the unicellular alga Bigelowiella natans. Physical clustering of these genes indicates that virophage genomes are integrated into the B. natans genome. Virophage inserts show high levels of similarity and synteny between each other, indicating that they are closely related. Virophage genes are transcribed not only in the sequenced B. natans strain but also in other Bigelowiella isolates, suggesting that transcriptionally active virophage inserts are widespread in Bigelowiella populations. Evidence that B. natans is also a host to NCLDV members is provided by the identification of NCLDV inserts in its genome. These putative large DNA viruses may be infected by B. natans virophages. We also identify four repeated elements sharing structural and genetic similarities with transpovirons--a class of mobile elements first discovered in giant viruses--that were probably independently inserted in the B. natans genome. We argue that endogenized provirophages may be beneficial to both the virophage and B. natans by (i) increasing the chances for the virophage to coinfect the host cell with an NCLDV prey and (ii) defending the host cell against fatal NCLDV infections.


Assuntos
Cercozoários/virologia , Vírus de DNA/genética , Genoma de Protozoário , Capsídeo , Cercozoários/genética , Códon , DNA de Protozoário/genética , DNA Viral/genética , Marcadores Genéticos , Genoma Viral , Funções Verossimilhança , Modelos Genéticos , Fases de Leitura Aberta , Filogenia , Estrutura Terciária de Proteína , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA