Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
J Microsc ; 294(3): 397-410, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38691400

RESUMO

In the dynamic landscape of scientific research, imaging core facilities are vital hubs propelling collaboration and innovation at the technology development and dissemination frontier. Here, we present a collaborative effort led by Global BioImaging (GBI), introducing international recommendations geared towards elevating the careers of Imaging Scientists in core facilities. Despite the critical role of Imaging Scientists in modern research ecosystems, challenges persist in recognising their value, aligning performance metrics and providing avenues for career progression and job security. The challenges encompass a mismatch between classic academic career paths and service-oriented roles, resulting in a lack of understanding regarding the value and impact of Imaging Scientists and core facilities and how to evaluate them properly. They further include challenges around sustainability, dedicated training opportunities and the recruitment and retention of talent. Structured across these interrelated sections, the recommendations within this publication aim to propose globally applicable solutions to navigate these challenges. These recommendations apply equally to colleagues working in other core facilities and research institutions through which access to technologies is facilitated and supported. This publication emphasises the pivotal role of Imaging Scientists in advancing research programs and presents a blueprint for fostering their career progression within institutions all around the world.


Assuntos
Pesquisadores , Humanos , Mobilidade Ocupacional , Pesquisa Biomédica/métodos , Escolha da Profissão
2.
JMIR Res Protoc ; 13: e52505, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38252470

RESUMO

BACKGROUND: Cognitive impairment is common with schizophrenia spectrum disorders. Cognitive remediation (CR) is effective in improving global cognition, but not all individuals benefit from this type of intervention. A better understanding of the potential mechanism of action of CR is needed. One proposed mechanism is reward learning (RL), the cognitive processes responsible for adapting behavior following positive or negative feedback. It is proposed that the structure of CR enhances RL and motivation to engage in increasingly challenging tasks, and this is a potential mechanism by which CR improves cognitive functioning in schizophrenia. OBJECTIVE: Our primary objective is to examine reward processing in individuals with schizophrenia before and after completing CR and to compare this with a group of matched clinical controls. We will assess whether RL mediates the relationship between CR and improved cognitive function and reduced negative symptoms. Potential differences in social RL and nonsocial RL in individuals with schizophrenia will also be investigated and compared with a healthy matched control group. METHODS: We propose a clinical, nonrandomized, pre-post pilot study comparing the impact of CR on RL and neurocognitive outcomes. The study will use a combination of objective and subjective measures to assess neurocognitive, psychiatric symptoms, and neurophysiological domains. A total of 40 individuals with schizophrenia spectrum disorders (aged 18-35 years) will receive 12 weeks of CR therapy (n=20) or treatment as usual (n=20). Reward processing will be evaluated using a reinforcement learning task with 2 conditions (social reward vs nonsocial reward) at baseline and the 12-week follow-up. Functional magnetic resonance imaging responses will be measured during this task. To validate the reinforcement learning task, RL will also be assessed in 20 healthy controls, matched for age, sex, and premorbid functioning. Mixed-factorial ANOVAs will be conducted to evaluate treatment group differences. For the functional magnetic resonance imaging analysis, computational modeling will allow the estimation of learning parameters at each point in time, during each task condition, for each participant. We will use a variational Bayesian framework to measure how learning occurred during the experimental task and the subprocesses that underlie this learning. Second-level group analyses will examine how learning in patients differs from that observed in control participants and how CR alters learning efficiency and the underlying neural activity. RESULTS: As of September 2023, this study has enrolled 15 participants in the CR group, 1 participant in the treatment-as-usual group, and 11 participants in the healthy control group. Recruitment is expected to be completed by September 2024. Data analysis is expected to be completed and published in early 2025. CONCLUSIONS: The results of this study will contribute to the knowledge of CR and RL processes in severe mental illness and the understanding of the systems that impact negative symptoms and cognitive impairments within this population. INTERNATIONAL REGISTERED REPORT IDENTIFIER (IRRID): DERR1-10.2196/52505.

3.
Curr Opin Otolaryngol Head Neck Surg ; 31(6): 368-373, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37548514

RESUMO

PURPOSE OF REVIEW: Radiological imaging is an essential component of head/neck cancer (HNC) care. Advances in imaging modalities (including CT, PET, MRI and ultrasound) and analysis have enhanced our understanding of tumour characteristics and prognosis. However, the application of these methods to evaluate treatment-related toxicities and functional burden is still emerging. This review showcases recent literature applying advanced imaging and radiomics to the assessment and management of sequelae following chemoradiotherapy for HNC. RECENT FINDINGS: Whilst primarily early-stage/exploratory studies, recent investigations have showcased the feasibility of using radiological imaging, particularly advanced/functional MRI (including diffusion-weighted and dynamic contrast-enhanced MRI), to quantify treatment-induced tissue change in the head/neck musculature, and the clinical manifestation of lymphoedema/fibrosis and dysphagia. Advanced feature analysis and radiomic studies have also begun to give specific focus to the prediction of functional endpoints, including dysphagia, trismus and fibrosis. SUMMARY: There is demonstrated potential in the use of novel imaging techniques, to help better understand pathophysiology, and improve assessment and treatment of functional deficits following HNC treatment. As larger studies emerge, technologies continue to progress, and pathways to clinical translation are honed, the application of these methods offers an exciting opportunity to transform clinical practices and improve outcomes for HNC survivors.


Assuntos
Transtornos de Deglutição , Neoplasias de Cabeça e Pescoço , Humanos , Sobrevivência , Neoplasias de Cabeça e Pescoço/diagnóstico por imagem , Neoplasias de Cabeça e Pescoço/terapia , Pescoço , Fibrose
4.
Prog Nucl Magn Reson Spectrosc ; 134-135: 52-64, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37321758

RESUMO

Chronic kidney disease (CKD) affects approximately 10% of the world population, higher still in some developing countries, and can cause irreversible kidney damage eventually leading to kidney failure requiring dialysis or kidney transplantation. However, not all patients with CKD will progress to this stage, and it is difficult to distinguish between progressors and non-progressors at the time of diagnosis. Current clinical practice involves monitoring estimated glomerular filtration rate and proteinuria to assess CKD trajectory over time; however, there remains a need for novel, validated methods that differentiate CKD progressors and non-progressors. Nuclear magnetic resonance techniques, including magnetic resonance spectroscopy and magnetic resonance imaging, have the potential to improve our understanding of CKD progression. Herein, we review the application of magnetic resonance spectroscopy both in preclinical and clinical settings to improve the diagnosis and surveillance of patients with CKD.


Assuntos
Diálise Renal , Insuficiência Renal Crônica , Humanos , Espectroscopia de Prótons por Ressonância Magnética , Progressão da Doença , Insuficiência Renal Crônica/diagnóstico por imagem , Insuficiência Renal Crônica/epidemiologia , Taxa de Filtração Glomerular
5.
NMR Biomed ; : e4934, 2023 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-36940008

RESUMO

There is a requirement for an objective method to determine a safe level of low-level military occupational blast, having recognised it can lead to neurological damage. The purpose of the current study was to evaluate the effect of artillery firing training on the neurochemistry of frontline soldiers using two-dimensional (2D) COrrelated SpectroscopY (2D COSY) in a 3-T clinical MR scanner. Ten men considered to be of sound health were evaluated before and after a week-long live firing exercise in two ways. Prior to the live fire exercise, all participants were screened by a clinical psychologist using a combination of clinical interviews and psychometric tests, and were then scanned with 3-T MRI. The protocols included T1- and T2-weighted images for diagnostic reporting and anatomical localisation and 2D COSY to record any neurochemical effects from the firing. No changes to the structural MRI were recorded. Nine substantive and statistically significant changes in the neurochemistry were recorded as a consequence of firing training. Glutamine and glutamate, glutathione, and two of the seven fucose-α (1-2)-glycans were significantly increased. N-acetyl aspartate, myo-inositol + creatine, and glycerol were also increased. Significant decreases were recorded for the glutathione cysteine moiety and tentatively assigned glycan with a 1-6 linkage (F2: 4.00, F1: 1.31 ppm). These molecules are part of three neurochemical pathways at the terminus of the neurons providing evidence of early markers of disruption to neurotransmission. Using this technology, the extent of deregulation can now be monitored for each frontline defender on a personalised basis. The capacity to monitor early a disruption in neurotransmitters, using the 2D COSY protocol, can observe the effect of firing and may be used to prevent or limit these events.

6.
Transl Androl Urol ; 11(7): 929-942, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35958897

RESUMO

Background: Routinely used clinical scanners, such as computed tomography (CT), magnetic resonance imaging (MRI) and ultrasound (US), are unable to distinguish between aggressive and indolent tumor subtypes in masses localized to the kidney, often leading to surgical overtreatment. The results of the current investigation demonstrate that chemical differences, detected in human kidney biopsies using two-dimensional COrrelated SpectroscopY (2D L-COSY) and evaluated using multivariate statistical analysis, can distinguish these subtypes. Methods: One hundred and twenty-six biopsy samples from patients with a confirmed enhancing kidney mass on abdominal imaging were analyzed as part of the training set. A further forty-three samples were used for model validation. In patients undergoing radical nephrectomy, biopsies of non-cancer kidney cortical tissue were also collected as a non-cancer control group. Spectroscopy data were analyzed using multivariate statistical analysis, including principal component analysis (PCA) and orthogonal projection to latent structures with discriminant analysis (OPLS-DA), to identify biomarkers in kidney cancer tissue that was also classified using the gold-standard of histopathology. Results: The data analysis methodology showed good separation between clear cell renal cell carcinoma (ccRCC) versus non-clear cell RCC (non-ccRCC) and non-cancer cortical tissue from the kidneys of tumor-bearing patients. Variable Importance for the Projection (VIP) values, and OPLS-DA loadings plots were used to identify chemical species that correlated significantly with the histopathological classification. Model validation resulted in the correct classification of 37/43 biopsy samples, which included the correct classification of 15/17 ccRCC biopsies, achieving an overall predictive accuracy of 86%, Those chemical markers with a VIP value >1.2 were further analyzed using univariate statistical analysis. A subgroup analysis of 47 tumor tissues arising from T1 tumors revealed distinct separation between ccRCC and non-ccRCC tissues. Conclusions: This study provides metabolic insights that could have future diagnostic and/or clinical value. The results of this work demonstrate a clear separation between clear cell and non-ccRCC and non-cancer kidney tissue from tumor-bearing patients. The clinical translation of these results will now require the development of a one-dimensional (1D) magnetic resonance spectroscopy (MRS) protocol, for the kidney, using an in vivo clinical MRI scanner.

7.
J Magn Reson Imaging ; 56(5): 1355-1369, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35319148

RESUMO

BACKGROUND: The relationship of tissue chemistry to breast density and cancer risk has not been documented despite breast density being a known risk factor. PURPOSE: To investigate whether distinct chemical profiles associated with breast density and cancer risk are identified in healthy breast tissue using in vivo two-dimensional correlated spectroscopy (2D COSY). STUDY TYPE: Prospective. POPULATION: One-hundred-seven participants including 55 at low risk and 52 at high risk of developing breast cancer. FIELD STRENGTH/SEQUENCE: 3 T/ axial/ T1, T2, 2D COSY. ASSESSMENT: Two radiologists defined breast density on T2. Interobserver variability assessed. Peak volumes normalized to methylene at (1.30, 1.30) ppm as internal shift reference. STATISTICAL TESTS: Chi-squared/Mann-Whitney/Kappa statistics/Kruskal Wallis/pairwise analyses. Significance level 0.05. RESULTS: Ten percentage were fatty breasts, 39% scattered fibroglandular, 35% heterogeneously dense, and 16% extremely dense. Interobserver variability was excellent (kappa = 0.817). Sixty percentage (64/107) were premenopausal. Four distinct tissue chemistry categories were identified: low-density (LD)/premenopausal, high-density (HD)/premenopausal, LD/postmenopausal, and HD/postmenopausal. Compared to LD, HD breast chemistry showed significant increases of cholesterol (235%) and lipid unsaturation (33%). In the low-risk category, postmenopausal women with dense breasts recorded the largest significant changes including cholesterol methyl 540%, lipid unsaturation 207%, glutamine/glutamate 900%, and choline/phosphocholine 800%. In the high-risk cohort, premenopausal women with HD recorded a more active chemical profile with significant increases in choline/phosphocholine 1100%, taurine/glucose 550% and cholesterol sterol 250%. DATA CONCLUSION: Four distinct chemical profiles were identified in healthy breast tissue based on breast density and menopausal status in participants at low and high risk. Gradual increase in neutral lipid content and metabolites was noted in both risk groups across categories in different order. In low risk, the HD postmenopausal category exhibited the highest metabolic activity, while women at high risk exhibited the highest lipid content and metabolic activity in the HD premenopausal category. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE: 3.


Assuntos
Densidade da Mama , Neoplasias da Mama , Neoplasias da Mama/diagnóstico por imagem , Colina , Feminino , Glucose , Glutamatos , Glutamina , Humanos , Lipídeos , Mamografia , Fosforilcolina , Estudos Prospectivos , Fatores de Risco , Esteróis , Taurina
8.
Front Neuroimaging ; 1: 831216, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37555159

RESUMO

Response to pain therapy is currently by patient self-report. We demonstrate that by evaluating the neurochemistry of a patient, using two-dimensional Correlated SpectroscopY (2D COSY) in a 3T MRI scanner, response to therapy can be recorded. A chronic temporomandibular joint (TMJ) pain patient was evaluated by a pain physician specializing in temporomandibular disorders (TMD), and by 2D COSY, before, and 6 days after treatment with Botulinum Toxin A. Prior to treatment the self-reported pain score was 8/10 and reduced to 0/10 within 24 h of treatment. The neurochemistry of the patient prior to treatment was typical of chronic pain. In particular, the Fuc-α(1-2) glycans were affected. Following treatment, the substrates, α-L Fucose, were elevated and the Fuc-α(1-2) glycans repopulated. The depletion of the molecule assigned the glutathione cysteine moiety, with chronic pain, is indicative of a Glutathione redox imbalance linked to neurodegeneration. This new approach to monitor pain could help discriminate the relative contributions in the complex interplay of the sensory and affective (emotional suffering) components of pain leading to appropriate individualized pharmaceutical drug regimens.

9.
J Headache Pain ; 22(1): 150, 2021 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-34903165

RESUMO

BACKGROUND: An imbalance between inhibitory and excitatory neurometabolites has been implicated in chronic pain. Prior work identified elevated levels of Gamma-aminobutyric acid + macromolecules ("GABA+") using magnetic resonance spectroscopy (MRS) in people with migraine. What is not understood is whether this increase in GABA+ is a cause, or consequence of living with, chronic migraine. Therefore, to further elucidate the nature of the elevated GABA+ levels reported in migraine, this study aimed to observe how GABA+ levels change in response to changes in the clinical characteristics of migraine over time. METHODS: We observed people with chronic migraine (ICHD-3) over 3-months as their treatment was escalated in line with the Australian Pharmaceutical Benefits Scheme (PBS). Participants underwent an MRS scan and completed questionnaires regarding migraine frequency, intensity (HIT-6) and disability (WHODAS) at baseline and following the routine 3 months treatment escalation to provide the potential for some participants to recover. We were therefore able to monitor changes in brain neurochemistry as clinical characteristics potentially changed over time. RESULTS: The results, from 18 participants who completed both baseline and follow-up measures, demonstrated that improvements in migraine frequency, intensity and disability were associated with an increase in GABA+ levels in the anterior cingulate cortex (ACC); migraine frequency (r = - 0.51, p = 0.03), intensity (r = - 0.51, p = 0.03) and disability (r = - 0.53, p = 0.02). However, this was not seen in the posterior cingulate gyrus (PCG). An incidental observation found those who happened to have their treatment escalated with CGRP-monoclonal antibodies (CGRP-mAbs) (n = 10) had a greater increase in ACC GABA+ levels (mean difference 0.54 IU IQR [0.02 to 1.05], p = 0.05) and reduction in migraine frequency (mean difference 10.3 IQR [2.52 to 18.07], p = 0.01) compared to those who did not (n = 8). CONCLUSION: The correlation between an increase in ACC GABA+ levels with improvement in clinical characteristics of migraine, suggest previously reported elevated GABA+ levels may not be a cause of migraine, but a protective mechanism attempting to suppress further migraine attacks.


Assuntos
Giro do Cíngulo , Transtornos de Enxaqueca , Austrália , Giro do Cíngulo/diagnóstico por imagem , Humanos , Espectroscopia de Ressonância Magnética , Transtornos de Enxaqueca/diagnóstico por imagem , Ácido gama-Aminobutírico
10.
Tomography ; 7(3): 323-332, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34449723

RESUMO

Objective: Ultra-high-field B0 ≥ 7 tesla (7T) cardiovascular magnetic resonance (CMR) offers increased resolution. However, electrocardiogram (ECG) gating is impacted by the magneto-hydrodynamic effect distorting the ECG trace. We explored the technical feasibility of a 7T magnetic resonance scanner using an ECG trigger learning algorithm to quantitatively assess cardiac volumes and vascular flow. Methods: 7T scans were performed on 10 healthy volunteers on a whole-body research MRI MR scanner (Siemens Healthineers, Erlangen, Germany) with 8 channel Tx/32 channels Rx cardiac coils (MRI Tools GmbH, Berlin, Germany). Vectorcardiogram ECG was performed using a learning phase outside of the magnetic field, with a trigger algorithm overcoming severe ECG signal distortions. Vectorcardiograms were quantitatively analyzed for false negative and false positive events. Cine CMR was performed after 3rd-order B0 shimming using a high-resolution breath-held ECG-retro-gated segmented spoiled gradient echo, and 2D phase contrast flow imaging. Artefacts were assessed using a semi-quantitative scale. Results: 7T CMR scans were acquired in all patients (100%) using the vectorcardiogram learning method. 3,142 R-waves were quantitatively analyzed, yielding sensitivity of 97.6% and specificity of 98.7%. Mean image quality score was 0.9, sufficient to quantitate both cardiac volumes, ejection fraction, and aortic and pulmonary blood flow. Mean left ventricular ejection fraction was 56.4%, right ventricular ejection fraction was 51.4%. Conclusion: Reliable cardiac ECG triggering is feasible in healthy volunteers at 7T utilizing a state-of-the-art three-lead trigger device despite signal distortion from the magnetohydrodynamic effect. This provides sufficient image quality for quantitative analysis. Other ultra-high-field imaging applications such as human brain functional MRI with physiologic noise correction may benefit from this method of ECG triggering.


Assuntos
Função Ventricular Esquerda , Função Ventricular Direita , Artefatos , Humanos , Imageamento por Ressonância Magnética , Volume Sistólico
11.
J Pain ; 22(12): 1631-1645, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34182103

RESUMO

Treatment outcomes for migraine and other chronic headache and pain conditions typically demonstrate modest results. A greater understanding of underlying pain mechanisms may better inform treatments and improve outcomes. Increased GABA+ has been identified in recent studies of migraine, however, it is unclear if this is present in other headache, and pain conditions. We primarily investigated GABA+ levels in the posterior cingulate gyrus (PCG) of people with migraine, whiplash-headache and low back pain compared to age- and sex-matched controls, GABA+ levels in the anterior cingulate cortex (ACC) and thalamus formed secondary aims. Using a cross-sectional design, we studied people with migraine, whiplash-headache or low back pain (n = 56) and compared them with a pool of age- and sex-matched controls (n = 22). We used spectral-edited magnetic resonance spectroscopy at 3T (MEGA-PRESS) to determine levels of GABA+ in the PCG, ACC and thalamus. PCG GABA+ levels were significantly higher in people with migraine and low back pain compared with controls (eg, migraine 4.89 IU ± 0.62 vs controls 4.62 IU ± 0.38; P = .02). Higher GABA+ levels in the PCG were not unique to migraine and could reflect a mechanism of chronic pain in general. A better understanding of pain at a neurochemical level informs the development of treatments that target aberrant brain neurochemistry to improve patient outcomes. PERSPECTIVE: This study provides insights into the underlying mechanisms of chronic pain. Higher levels of GABA+ in the PCG may reflect an underlying mechanism of chronic headache and pain conditions. This knowledge may help improve patient outcomes through developing treatments that specifically address this aberrant brain neurochemistry.


Assuntos
Dor Crônica/metabolismo , Giro do Cíngulo/metabolismo , Cefaleia/metabolismo , Dor Lombar/metabolismo , Transtornos de Enxaqueca/metabolismo , Tálamo/metabolismo , Ácido gama-Aminobutírico/metabolismo , Adulto , Estudos de Casos e Controles , Dor Crônica/diagnóstico por imagem , Estudos Transversais , Feminino , Giro do Cíngulo/diagnóstico por imagem , Cefaleia/diagnóstico por imagem , Cefaleia/etiologia , Humanos , Dor Lombar/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade , Transtornos de Enxaqueca/diagnóstico por imagem , Espectroscopia de Prótons por Ressonância Magnética , Tálamo/diagnóstico por imagem , Traumatismos em Chicotada/complicações
13.
Tissue Eng Part C Methods ; 27(6): 366-377, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33906394

RESUMO

Scaffold-guided breast tissue engineering (SGBTE) has the potential to transform reconstructive breast surgery. Currently, there is a deficiency in clinically relevant animal models suitable for studying novel breast tissue engineering concepts. To date, only a small number of large animal studies have been conducted and characterization of these large animal models is poorly described in the literature. Addressing this gap in the literature, this publication comprehensively describes our original porcine model based on the current published literature and the experience gained from previous animal studies conducted by our research group. In a long-term experiment using our model, we investigated our SGBTE approach by implanting 60 additively manufactured bioresorbable scaffolds under the panniculus carnosus muscle along the flanks of 12 pigs over 12 months. Our model has the flexibility to compare multiple treatment modalities where we successfully investigated scaffolds filled with various treatments of immediate and delayed fat graft and augmentation with platelet rich plasma. No wound complications were observed using our animal model. We were able to grow clinically relevant volumes of soft tissue, which validates our model. Our preclinical large animal model is ideally suited to assess different scaffold or hydrogel-driven soft tissue regeneration strategies. Impact statement The ability to regenerate soft tissue through scaffold-guided tissue engineering concepts can transform breast reconstructive surgery. We describe an original preclinical large animal model to study controlled and reproducible scaffold-guided breast tissue engineering (SGBTE) concepts. This model features the flexibility to investigate multiple treatment conditions per animal, making it an efficient model. We have validated our model with a long-term experiment over 12 months, which exceeds other shorter published studies. Our SGBTE concept provides a more clinically relevant approach in terms of breast reconstruction. Future studies using this model will support the translation of SGBTE into clinical practice.


Assuntos
Procedimentos de Cirurgia Plástica , Engenharia Tecidual , Animais , Hidrogéis , Modelos Animais , Suínos , Alicerces Teciduais
14.
Nucl Med Biol ; 88-89: 44-51, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32777548

RESUMO

INTRODUCTION: Prenatal ethanol exposure (PEE) has been shown to alter the level and function of receptors in the brain, one of which is GABAa receptors (GABAaR), the major inhibitory ligand gated ion channels that mediate neuronal inhibition. High dose PEE in animals resulted in the upregulation of GABAaR, but the effects of low and moderate dose PEE at early gestation have not been investigated. This study aimed at examining GABAaR density in the adult mouse brain following PEE during a period equivalent to the first 3 to 4 weeks in human gestation. It was hypothesized that early moderate PEE would cause alterations in brain GABAaR levels in the adult offspring. METHODS: C57BL/6J mice were given 10% v/v ethanol during the first 8 gestational days. Male offspring were studied using in-vivo Positron Emission Tomography (PET)/Magnetic Resonance Imaging (MRI), biodistribution, in-vitro autoradiography using [18F]AH114726, a novel flumazenil analogue with a high affinity for the benzodiazepine-binding site, and validated using immunohistochemistry. RESULTS: In vivo PET and biodistribution did not detect alteration in brain tracer uptake. In vitro radiotracer studies detected significantly reduced GABAaR in the olfactory bulbs. Immunohistochemistry detected reduced GABAaR in the cerebral cortex, cerebellum and hippocampus, while Nissl staining showed that cell density was significantly higher in the striatum following PEE. CONCLUSION: Early moderate PEE may induce long-term alterations in the GABAaR system that persisted into adulthood.


Assuntos
Benzodiazepinas/química , Encéfalo/metabolismo , Etanol/toxicidade , Flumazenil/metabolismo , Radioisótopos de Flúor/metabolismo , Efeitos Tardios da Exposição Pré-Natal/patologia , Receptores de GABA-A/metabolismo , Animais , Depressores do Sistema Nervoso Central/toxicidade , Modelos Animais de Doenças , Feminino , Flumazenil/química , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Tomografia por Emissão de Pósitrons/métodos , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Compostos Radiofarmacêuticos/metabolismo , Distribuição Tecidual
15.
Neurotoxicol Teratol ; 77: 106849, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31838218

RESUMO

BACKGROUND: This study investigated the effects of early moderate prenatal ethanol exposure (PEE) on the brain in a mouse model that mimics a scenario in humans, whereby moderate daily drinking ceases after a woman becomes aware of her pregnancy. METHODS: C57BL/6J pregnant mice were given 10% v/v ethanol from gestational day 0-8 in the drinking water. The male offspring were used for imaging. Anatomical and diffusion Magnetic Resonance Imaging were performed in vivo at postnatal day 28 (P28, adolescence) and P80 (adulthood). Micro-Computed Tomography was performed on fixed whole heads at P80. Tensor-based morphometry (TBM) was applied to detect alterations in brain structure and voxel-based morphometry (VBM) for skull morphology. Diffusion tensor and neurite orientation dispersion and density imaging models were used to detect microstructural changes. Neurofilament (NF) immunohistochemistry was used to validate findings by in vivo diffusion MRI. RESULTS: TBM showed that PEE mice exhibited a significantly smaller third ventricle at P28 (family-wise error rate (FWE), p < 0.05). All other macro-structural alterations did not survive FWE corrections but when displayed with an uncorrected p < 0.005 showed multiple regional volume reductions and expansions, more prominently in the right hemisphere. PEE-induced gross volume changes included a bigger thalamus, hypothalamus and ventricles at P28, and bigger total brain volumes at both P28 and P80 (2-sample t-tests). Disproportionately smaller olfactory bulbs following PEE were revealed at both time-points. No alterations in diffusion parameters were detected, but PEE animals exhibited reduced NF positive staining in the thalamus and striatum and greater bone density in various skull regions. CONCLUSION: Our results show that early moderate PEE can cause alterations in the brain that are detectable during development and adulthood.


Assuntos
Encéfalo/patologia , Etanol/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/patologia , Crânio/anormalidades , Fatores Etários , Animais , Atrofia/patologia , Encéfalo/metabolismo , Imagem de Difusão por Ressonância Magnética , Feminino , Processamento de Imagem Assistida por Computador , Filamentos Intermediários/metabolismo , Masculino , Camundongos , Neuritos/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Terceiro Ventrículo/patologia , Microtomografia por Raio-X
16.
Sci Rep ; 9(1): 18806, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31827116

RESUMO

Fucosylated glycans are involved in the molecular mechanisms that underpin neuronal development, learning and memory. The capacity to study the fucose-α(1-2)-glycan residues noninvasively in the human brain, is integral to understanding their function and deregulation. Five fucose crosspeaks were assigned to fucosylated glycans using in vivo two-dimensional magnetic resonance Correlated SpectroscopY (2D L-COSY) of the brain. Recent improvements encompassed on the 3T Prisma (Siemens, Erlangen) with a 64-channel head and neck coil have allowed two new assignments. These are Fuc VI (F2:4.44, F1:1.37 ppm) and Fuc VII (F2: 4.29, F1:1.36 ppm). The Fuc VI crosspeak, close to the water resonance, is resolved due to decreased T1 noise. Fuc VII crosspeak, located between Fuc I and III, is available for inspection due to increased spectral resolution. Spectra recorded from 33 healthy men and women showed a maximum variation of up to 0.02 ppm in chemical shifts for all crosspeaks.


Assuntos
Encéfalo/metabolismo , Fucose , Polissacarídeos/análise , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Humanos , Espectroscopia de Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Polissacarídeos/química , Adulto Jovem
17.
Transl Psychiatry ; 9(1): 76, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30723190

RESUMO

The original article contained errors in the Fig. 1 caption. The incorrect sentence, "The region highlighted by the white box is expanded in Fig. 3" was corrected to, "The region highlighted by the white box is expanded in Fig. 2." This has been corrected in the HTML and PDF of the article.

18.
Transl Psychiatry ; 9(1): 27, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30659168

RESUMO

Post-traumatic stress disorder (PTSD) is triggered by experiencing terrifying event(s) for which there is currently no objective test for a definitive diagnosis. We report a pilot study where two-dimensional (2D) neuro magnetic resonance spectroscopy (MRS), collected at 3 T in a clinical scanner with a 64-channel head coil, identifies neuro deregulation in the PTSD cohort. The control subjects (n = 10) were compared with PTSD participants with minimal co-morbidities (n = 10). The 2D MRS identified statistically significant increases in the total spectral region containing both free substrate fucose and fucosylated glycans of 31% (P = 0.0013), two of multiple fucosylated glycans (Fuc IV and VI) were elevated by 48% (P = 0.002), and 41% (P = 0.02), respectively, imidazole was increased by 12% (P = 0.002), and lipid saturation was increased by 12.5% (P = 0.009). This is the first evidence of fucosylated glycans, reported in animals to be involved in learning and memory, to be affected in humans with PTSD.


Assuntos
Encéfalo/diagnóstico por imagem , Fucose/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Transtornos de Estresse Pós-Traumáticos/metabolismo , Adulto , Estudos de Casos e Controles , Estudos de Coortes , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Projetos Piloto
19.
Alcohol ; 75: 1-10, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30316966

RESUMO

We examined whether an early-life event - ethanol exposure in the initial stages of pregnancy - affected offspring brain structure, energy metabolism, and body composition in later life. Consumption of 10% (v/v) ethanol by inbred C57BL/6J female mice from 0.5 to 8.5 days post coitum was used to model alcohol exposure during the first 3-4 weeks of gestation in humans, when pregnancy is not typically recognized. At adolescence (postnatal day [P] 28) and adulthood (P64), the brains of male offspring were scanned ex vivo using ultra-high field (16.4 T) magnetic resonance imaging and diffusion tensor imaging. Energy metabolism and body composition were measured in adulthood by indirect calorimetry and dual-energy X-ray absorptiometry (DXA), respectively. Ethanol exposure had no substantial impact on white matter organization in the anterior commissure, corpus callosum, hippocampal commissure, internal capsule, optic tract, or thalamus. Whole brain volume and the volumes of the neocortex, cerebellum, and caudate putamen were also unaffected. Subtle, but non-significant, effects were observed on the hippocampus and the hypothalamus in adult ethanol-exposed male offspring. Ethanol exposure was additionally associated with a trend toward decreased oxygen consumption, carbon dioxide production, and reduced daily energy expenditure, as well as significantly increased adiposity, albeit with normal body weight and food intake, in adult male offspring. In summary, ethanol exposure restricted to early gestation had subtle long-term effects on the structure of specific brain regions in male offspring. The sensitivity of the hippocampus to ethanol-induced damage is reminiscent of that reported by other studies - despite differences in the level, timing, and duration of exposure - and likely contributes to the cognitive impairment that characteristically results from prenatal ethanol exposure. The hypothalamus plays an important role in regulating metabolism and energy homeostasis. Our finding of altered daily energy expenditure and adiposity in adult ethanol-exposed males is consistent with the idea that central nervous system abnormalities also underpin some of the metabolic phenotypes associated with ethanol exposure in pregnancy.


Assuntos
Adiposidade/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Metabolismo Energético/efeitos dos fármacos , Etanol/toxicidade , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Adiposidade/fisiologia , Fatores Etários , Animais , Encéfalo/diagnóstico por imagem , Metabolismo Energético/fisiologia , Etanol/administração & dosagem , Feminino , Transtornos do Espectro Alcoólico Fetal/diagnóstico por imagem , Transtornos do Espectro Alcoólico Fetal/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/diagnóstico por imagem
20.
Physiol Rep ; 6(9): e13699, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29756411

RESUMO

Ischemic heart disease (IHD) is a leading cause of morbidity and mortality worldwide. Growth hormone secretagogues (GHS) have been shown to improve cardiac function in models of IHD. This study determined whether hexarelin (HEX), a synthetic GHS, preserves cardiac function and morphology in a mouse model of myocardial infarction (MI). MI was induced by ligation of the left descending coronary artery in C57BL/6J mice followed by vehicle (VEH; n = 10) or HEX (0.3 mg/kg/day; n = 11) administration for 21 days. MI-injured and sham mice (treated with VEH; n = 6 or HEX; n = 5) underwent magnetic resonance imaging for measurement of left ventricular (LV) function, mass and infarct size at 24 h and 14 days post-MI. MI-HEX mice displayed a significant improvement (P < 0.05) in LV function compared with MI-VEH mice after 14 days treatment. A significant decrease in LV mass, interstitial collagen and collagen concentration was demonstrated with chronic HEX treatment (for 21 days), accompanied by a decrease in TGF-ß1 expression, myofibroblast differentiation and an increase in collagen-degrading MMP-13 expression levels. Furthermore, heart rate variability analysis demonstrated that HEX treatment shifted the balance of autonomic nervous activity toward a parasympathetic predominance and sympathetic downregulation. This was combined with a HEX-dependent decrease in troponin-I, IL-1ß and TNF-α levels suggestive of amelioration of cardiomyocyte injury. These results demonstrate that GHS may preserve ventricular function, reduce inflammation and favorably remodel the process of fibrotic healing in a mouse model of MI and hold the potential for translational application to patients suffering from MI.


Assuntos
Coração/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Oligopeptídeos/administração & dosagem , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Fibrose , Coração/fisiopatologia , Inflamação/complicações , Inflamação/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/etiologia , Miocárdio/patologia , Remodelação Ventricular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA