Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Nano ; 18(19): 12427-12452, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38687909

RESUMO

Light-driven modulation of neuronal activity at high spatial-temporal resolution is becoming of high interest in neuroscience. In addition to optogenetics, nongenetic membrane-targeted nanomachines that alter the electrical state of the neuronal membranes are in demand. Here, we engineered and characterized a photoswitchable conjugated compound (BV-1) that spontaneously partitions into the neuronal membrane and undergoes a charge transfer upon light stimulation. The activity of primary neurons is not affected in the dark, whereas millisecond light pulses of cyan light induce a progressive decrease in membrane resistance and an increase in inward current matched to a progressive depolarization and action potential firing. We found that illumination of BV-1 induces oxidation of membrane phospholipids, which is necessary for the electrophysiological effects and is associated with decreased membrane tension and increased membrane fluidity. Time-resolved atomic force microscopy and molecular dynamics simulations performed on planar lipid bilayers revealed that the underlying mechanism is a light-driven formation of pore-like structures across the plasma membrane. Such a phenomenon decreases membrane resistance and increases permeability to monovalent cations, namely, Na+, mimicking the effects of antifungal polyenes. The same effect on membrane resistance was also observed in nonexcitable cells. When sustained light stimulations are applied, neuronal swelling and death occur. The light-controlled pore-forming properties of BV-1 allow performing "on-demand" light-induced membrane poration to rapidly shift from cell-attached to perforated whole-cell patch-clamp configuration. Administration of BV-1 to ex vivo retinal explants or in vivo primary visual cortex elicited neuronal firing in response to short trains of light stimuli, followed by activity silencing upon prolonged light stimulations. BV-1 represents a versatile molecular nanomachine whose properties can be exploited to induce either photostimulation or space-specific cell death, depending on the pattern and duration of light stimulation.


Assuntos
Neurônios , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Animais , Membrana Celular/metabolismo , Membrana Celular/química , Luz , Bicamadas Lipídicas/química , Simulação de Dinâmica Molecular , Ratos , Camundongos , Optogenética
2.
J Vis ; 22(10): 1, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36053134

RESUMO

Perceptual history influences current perception, readily revealed by visual priming (the facilitation of responses on repeated presentations of similar stimuli) and by serial dependence (systematic biases toward the previous stimuli). We asked whether the two phenomena shared perceptual mechanisms. We modified the standard "priming of pop-out" paradigm to measure both priming and serial dependence concurrently. The stimulus comprised three grating patches, one or two red, and the other green. Participants identified the color singleton (either red or green), and reproduced its orientation. Trial sequences were designed to maximize serial dependence, and long runs of priming color and position. The results showed strong effects of priming, both on reaction times and accuracy, which accumulated steadily over time, as generally reported in the literature. The serial dependence effects were also strong, but did not depend on previous color, nor on the run length. Reaction times measured under various conditions of repetition or change of priming color or position were reliably correlated with imprecision in orientation reproduction, but reliably uncorrelated with magnitude of serial dependence. The results suggest that visual priming and serial dependence are mediated by different neural mechanisms. We propose that priming affects sensitivity, possibly via attention-like mechanisms, whereas serial dependence affects criteria, two orthogonal dimensions in the signal detection theory.


Assuntos
Atenção , Percepção de Cores , Atenção/fisiologia , Viés , Percepção de Cores/fisiologia , Humanos , Reconhecimento Visual de Modelos/fisiologia , Tempo de Reação , Percepção Visual/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA