Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Comput Biol Med ; 149: 106029, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36067633

RESUMO

BACKGROUND: To understand the transcriptomic response to SARS-CoV-2 infection, is of the utmost importance to design diagnostic tools predicting the severity of the infection. METHODS: We have performed a deep sampling analysis of the viral transcriptomic data oriented towards drug repositioning. Using different samplers, the basic principle of this methodology the biological invariance, which means that the pathways altered by the disease, should be independent on the algorithm used to unravel them. RESULTS: The transcriptomic analysis of the altered pathways, reveals a distinctive inflammatory response and potential side effects of infection. The virus replication causes, in some cases, acute respiratory distress syndrome in the lungs, and affects other organs such as heart, brain, and kidneys. Therefore, the repositioned drugs to fight COVID-19 should, not only target the interferon signalling pathway and the control of the inflammation, but also the altered genetic pathways related to the side effects of infection. We also show via Principal Component Analysis that the transcriptome signatures are different from influenza and RSV. The gene COL1A1, which controls collagen production, seems to play a key/vital role in the regulation of the immune system. Additionally, other small-scale signature genes appear to be involved in the development of other COVID-19 comorbidities. CONCLUSIONS: Transcriptome-based drug repositioning offers possible fast-track antiviral therapy for COVID-19 patients. It calls for additional clinical studies using FDA approved drugs for patients with increased susceptibility to infection and with serious medical complications.


Assuntos
Tratamento Farmacológico da COVID-19 , COVID-19 , SARS-CoV-2 , Antivirais/farmacologia , Antivirais/uso terapêutico , COVID-19/genética , Reposicionamento de Medicamentos , Humanos , Interferons , Transcriptoma/genética
2.
3.
EXCLI J ; 19: 1401-1413, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33312104

RESUMO

The goal of all medical activity is to preserve health in fit people, and to restore the sick into a state of complete physical, mental and social wellbeing. In an effort to determine whether we are achieving this last goal in oncology, herein we review the biological and clinical framework that has led to the foundations of the current anticancer treatment paradigm. Currently, cancer therapy is still based on the ancient axiom that states that the complete eradication of the tumor burden is the only way to achieve a cure. This strategy has led to a substantial improvement in survival rates as cancer mortality rates have dropped in an unprecedented way. Despite this progress, more than 9 million people still die from cancer every year, indicating that the current treatment strategy is not leading to a cancer cure, but to a cancer remission, that is "the temporary absence of manifestations of a particular disease"; after months or years of remission, in most patients, cancer will inevitably recur. Our critical analysis indicates that it is time to discuss about the new key challenges and future directions in clinical oncology. We need to generate novel treatment strategies more suited to the current clinical reality.

4.
Diagnostics (Basel) ; 10(11)2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33218060

RESUMO

This study evaluated whether deep learning frameworks trained in large datasets can help non-dermatologist physicians improve their accuracy in categorizing the seven most common pigmented skin lesions. Open-source skin images were downloaded from the International Skin Imaging Collaboration (ISIC) archive. Different deep neural networks (DNNs) (n = 8) were trained based on a random dataset constituted of 8015 images. A test set of 2003 images was used to assess the classifiers' performance at low (300 × 224 RGB) and high (600 × 450 RGB) image resolution and aggregated data (age, sex and lesion localization). We also organized two different contests to compare the DNN performance to that of general practitioners by means of unassisted image observation. Both at low and high image resolution, the DNN framework differentiated dermatological images with appreciable performance. In all cases, the accuracy was improved when adding clinical data to the framework. Finally, the least accurate DNN outperformed general practitioners. The physician's accuracy was statistically improved when allowed to use the output of this algorithmic framework as guidance. DNNs are proven to be high performers as skin lesion classifiers and can improve general practitioner diagnosis accuracy in a routine clinical scenario.

5.
Int J Chronic Dis ; 2020: 4715426, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32566644

RESUMO

The ultimate goal of all medical activity is to restore patients to a state of complete physical, mental, and social wellbeing. In cancer, it is assumed that this can only be obtained through the complete eradication of the tumor burden. So far, this strategy has led to a substantial improvement in cancer survival rates. Despite this, more than 9 million people die from cancer every year. Therefore, we need to accept that our current cancer treatment paradigm is obsolete and must be changed. The new paradigm should reflect that cancer is a systemic disease, which affects an individual patient living in a particular social reality, rather than an invading organism or a mere cluster of mutated cells that need to be eradicated. This Hippocratic holistic view will ultimately lead to an improvement in health and wellbeing in cancer patients. They deserve nothing less.

6.
Oncotarget ; 10(28): 2709-2721, 2019 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-31105871

RESUMO

Despite recent progress in its treatment, Multiple Myeloma (MM) remains incurable and its associated bone disease persists even after complete remission. Thus, identification of new therapeutic agents that simultaneously suppress MM growth and protect bone is an unmet need. Herein, we examined the effects of Aplidin, a novel anti-cancer marine-derived compound, on MM and bone cells. In vitro, Aplidin potently inhibited MM cell growth and induced apoptosis, effects that were enhanced by dexamethasone (Dex) and bortezomib (Btz). Aplidin modestly reduced osteocyte/osteoblast viability and decreased osteoblast mineralization, effects that were enhanced by Dex and partially prevented by Btz. Further, Aplidin markedly decreased osteoclast precursor numbers and differentiation, and reduced mature osteoclast number and resorption activity. Moreover, Aplidin reduced Dex-induced osteoclast differentiation and further decreased osteoclast number when combined with Btz. Lastly, Aplidin alone, or suboptimal doses of Aplidin combined with Dex or Btz, decreased tumor growth and bone resorption in ex vivo bone organ cultures that reproduce the 3D-organization and the cellular diversity of the MM/bone marrow niche. These results demonstrate that Aplidin has potent anti-myeloma and anti-resorptive properties, and enhances proteasome inhibitors blockade of MM growth and bone destruction.

7.
Future Oncol ; 15(3): 231-239, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30362375

RESUMO

Lurbinectedin is an inhibitor of active transcription of protein-coding genes, causing DNA-break accumulation, apoptosis and modulation of the tumor microenvironment. Early-phase clinical trials indicate promising activity of lurbinectedin in small-cell lung cancer. Here, we describe the rationale and design of ATLANTIS (NCT02566993), an open-label, randomized, multicenter Phase III study to compare the efficacy of lurbinectedin and doxorubicin combination with standard-of-care chemotherapy, investigator's choice of cyclophosphamide/doxorubicin/vincristine or topotecan, in patients with small-cell lung cancer that has progressed following one line of platinum-based chemotherapy. Patients are randomized in a 1:1 ratio. The primary end point is overall survival and key secondary end points include progression-free survival, best tumor response and duration of response, each assessed by independent review committee.


Assuntos
Carbolinas/administração & dosagem , Doxorrubicina/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Idoso , Protocolos de Quimioterapia Combinada Antineoplásica/administração & dosagem , Apoptose/efeitos dos fármacos , Ciclofosfamida/administração & dosagem , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Platina/administração & dosagem , Platina/efeitos adversos , Intervalo Livre de Progressão , Carcinoma de Pequenas Células do Pulmão/patologia , Topotecan/administração & dosagem , Vincristina/administração & dosagem
8.
Mol Cancer Res ; 17(3): 773-782, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30552231

RESUMO

R-loops are a major source of replication stress, DNA damage, and genome instability, which are major hallmarks of cancer cells. Accordingly, growing evidence suggests that R-loops may also be related to cancer. Here we show that R-loops play an important role in the cellular response to trabectedin (ET743), an anticancer drug from marine origin and its derivative lurbinectedin (PM01183). Trabectedin and lurbinectedin induced RNA-DNA hybrid-dependent DNA damage in HeLa cells, causing replication impairment and genome instability. We also show that high levels of R-loops increase cell sensitivity to trabectedin. In addition, trabectedin led to transcription-dependent FANCD2 foci accumulation, which was suppressed by RNase H1 overexpression. In yeast, trabectedin and lurbinectedin increased the presence of Rad52 foci, a marker of DNA damage, in an R-loop-dependent manner. In addition to providing new insights into the mechanisms of action of these drugs, our study reveals that R-loops could be targeted by anticancer agents. Given the increasing evidence that R-loops occur all over the genome, the ability of lurbinectedin and trabectedin to act on them may contribute to enhance their efficacy, opening the possibility that R-loops might be a feature shared by specific cancers. IMPLICATIONS: The data presented in this study provide the new concept that R-loops are important cellular factors that contribute to trabectedin and lurbinectedin anticancer activity.


Assuntos
Carbolinas/uso terapêutico , Replicação do DNA/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Trabectedina/uso terapêutico , Carbolinas/farmacologia , Proliferação de Células , Instabilidade Genômica , Células HeLa , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Trabectedina/farmacologia
9.
Br J Cancer ; 119(11): 1410-1420, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30420615

RESUMO

BACKGROUND: Through several not-fully-characterised moonlighting functions, translation elongation factor eEF1A2 is known to provide a fitness boost to cancer cells. Furthermore, eEF1A2 has been demonstrated to confer neoplastic characteristics on preneoplastic, nontumourigenic precursor cells. We have previously shown that eEF1A2 is the target of plitidepsin, a marine drug currently in development for cancer treatment. Herein, we characterised a new signalling pathway through which eEF1A2 promotes tumour cell survival. METHODS: Previously unknown binding partners of eEF1A2 were identified through co-immunoprecipitation, high-performance liquid chromatography-mass spectrometry and proximity ligation assay. Using plitidepsin to release eEF1A2 from those protein complexes, their effects on cancer cell survival were analysed in vitro. RESULTS: We uncovered that double-stranded RNA-activated protein kinase (PKR) is a novel eEF1A2-interacting partner whose pro-apoptotic effect is hindered by the translation factor, most likely through sequestration and inhibition of its kinase activity. Targeting eEF1A2 with plitidepsin releases PKR from the complex, facilitating its activation and triggering a mitogen-activated protein kinase signalling cascade together with a nuclear factor-κB-dependent activation of the extrinsic apoptotic pathway, which lead to tumour cell death. CONCLUSIONS: Through its binding to PKR, eEF1A2 provides a survival boost to cancer cells, constituting an Achilles heel that can be exploited in anticancer therapy.


Assuntos
Sobrevivência Celular , Fator 1 de Elongação de Peptídeos/metabolismo , eIF-2 Quinase/metabolismo , Animais , Células HeLa , Humanos , Camundongos , NF-kappa B/metabolismo , Ligação Proteica , Transdução de Sinais
10.
J Clin Oncol ; 36(31): 3134-3143, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30240327

RESUMO

PURPOSE: This multicenter phase II trial evaluated lurbinectedin (PM01183), a selective inhibitor of active transcription of protein-coding genes, in patients with metastatic breast cancer. A unicenter translational substudy assessed potential mechanisms of lurbinectedin resistance. PATIENTS AND METHODS: Two arms were evaluated according to germline BRCA1/2 status: BRCA1/2 mutated (arm A; n = 54) and unselected ( BRCA1/2 wild-type or unknown status; arm B; n = 35). Lurbinectedin starting dose was a 7-mg flat dose and later, 3.5 mg/m2 in arm A. The primary end point was objective response rate (ORR) per Response Evaluation Criteria in Solid Tumors (RECIST). The translational substudy of resistance mechanisms included exome sequencing (n = 13) and in vivo experiments with patient-derived xenografts (n = 11) from BRCA1/2-mutated tumors. RESULTS: ORR was 41% (95% CI, 28% to 55%) in arm A and 9% (95% CI, 2% to 24%) in arm B. In arm A, median progression-free survival was 4.6 months (95% CI, 3.0 to 6.0 months), and median overall survival was 20.0 months (95% CI, 11.8 to 26.6 months). Patients with BRCA2 mutations showed an ORR of 61%, median progression-free survival of 5.9 months, and median overall survival of 26.6 months. The safety profile improved with lurbinectedin dose adjustment to body surface area. The most common nonhematologic adverse events seen at 3.5 mg/m2 were nausea (74%; grade 3, 5%) and fatigue (74%; grade 3, 21%). Neutropenia was the most common severe hematologic adverse event (grade 3, 47%; grade 4, 10%). Exome sequencing showed mutations in genes related to the nucleotide excision repair pathway in four of seven tumors at primary or acquired resistance and in one patient with short-term stable disease. In vivo, sensitivity to cisplatin and lurbinectedin was evidenced in lurbinectedin-resistant (one of two) and cisplatin-resistant (two of three) patient-derived xenografts. CONCLUSION: Lurbinectedin showed noteworthy activity in patients with BRCA1/2 mutations. Response and survival was notable in those with BRCA2 mutations. Additional clinical development in this subset of patients with metastatic breast cancer is warranted.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Carbolinas/administração & dosagem , Compostos Heterocíclicos de 4 ou mais Anéis/administração & dosagem , Adulto , Idoso , Animais , Antineoplásicos/efeitos adversos , Biomarcadores Tumorais/análise , Neoplasias da Mama/genética , Carbolinas/efeitos adversos , Relação Dose-Resposta a Droga , Feminino , Genes BRCA1 , Genes BRCA2 , Mutação em Linhagem Germinativa , Compostos Heterocíclicos de 4 ou mais Anéis/efeitos adversos , Humanos , Camundongos , Pessoa de Meia-Idade , Intervalo Livre de Progressão , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Sci Rep ; 8(1): 8616, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29872155

RESUMO

Plocabulin (PM060184) is a microtubule depolymerizing agent with potent antiproliferative activity undergoing phase II clinical trials for the treatment of solid tumors. Plocabulin shows antifungal activity virtually abolishing growth of the filamentous fungus Aspergillus nidulans. A. nidulans hyphae depend both on mitotic and interphase microtubules, as human cells. Here, we exploited the A. nidulans genetic amenability to gain insight into the mechanism of action of plocabulin. By combining mutations in the two A. nidulans ß-tubulin isotypes we obtained a plocabulin-insensitive strain, showing that ß-tubulin is the only molecular target of plocabulin in fungal cells. From a genetic screen, we recovered five mutants that show plocabulin resistance but do not carry mutations in ß-tubulin. Resistance mutations resulted in amino acid substitutions in (1) two subunits of the eukaryotic translation initiation factor eIF2B activating the General Amino Acid Control, (2) TIM44, an essential component of the inner mitochondrial membrane translocase, (3) two transcription factors of the binuclear zinc cluster family potentially interfering with the uptake or efflux of plocabulin. Given the conservation of some of the identified proteins and their respective cellular functions in the tumor environment, our results pinpoint candidates to be tested as potential biomarkers for determination of drug efficiency.


Assuntos
Antineoplásicos/farmacologia , Aspergillus nidulans/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Microtúbulos/efeitos dos fármacos , Policetídeos/farmacologia , Pironas/farmacologia , Farmacorresistência Fúngica , Proteínas Fúngicas/genética , Mutação de Sentido Incorreto , Tubulina (Proteína)/genética
12.
Mol Cancer Ther ; 17(4): 786-794, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29440297

RESUMO

In the search for novel payloads to design new antibody-drug conjugates (ADC), marine compounds represent an interesting opportunity given their unique chemical features. PM050489 is a marine compound that binds ß-tubulin at a new site and disrupts the microtubule network, hence leading to mitotic aberrations and cell death. PM050489 has been conjugated to trastuzumab via Cys residues through a noncleavable linker, and the resulting ADC, named MI130004, has been studied. Analysis of MI130004 delivered data consistent with the presence of two molecules of PM050489 per antibody molecule, likely bound to both sides of the intermolecular disulfide bond connecting the antibody light and heavy chains. The antitumor activity of MI130004 was analyzed in vitro and in vivo in different cell lines of diverse tumor origin (breast, ovary, and gastric cancer) expressing different levels of HER2. MI130004 showed very high in vitro potency and good selectivity for tumor cells that overexpressed HER2. At the cellular level, MI130004 impaired tubulin polymerization, causing disorganization and disintegration of the microtubule network, which ultimately led to mitotic failure, mirroring the effect of its payload. Treatment with MI130004 in mice carrying histologically diverse tumors expressing HER2 induced a long-lasting antitumor effect with statistically significant inhibition of tumor growth coupled with increases in median survival time compared with vehicle or trastuzumab. These results strongly suggest that MI130004 is endowed with remarkable anticancer activity and confirm the extraordinary potential of marine compounds for the design of new ADCs. Mol Cancer Ther; 17(4); 786-94. ©2018 AACR.


Assuntos
Anticorpos Monoclonais Humanizados/farmacologia , Imunoconjugados/farmacologia , Neoplasias/tratamento farmacológico , Policetídeos/farmacologia , Pironas/farmacologia , Receptor ErbB-2/imunologia , Trastuzumab/farmacologia , Animais , Anticorpos Monoclonais Humanizados/química , Apoptose , Proliferação de Células , Feminino , Humanos , Imunoconjugados/química , Camundongos , Camundongos Nus , Camundongos SCID , Neoplasias/enzimologia , Neoplasias/patologia , Policetídeos/química , Pironas/química , Trastuzumab/química , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
13.
BMC Cancer ; 18(1): 164, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29415678

RESUMO

BACKGROUND: Vascular supply of tumors is one of the main targets for cancer therapy. Here, we investigated if plocabulin (PM060184), a novel marine-derived microtubule-binding agent, presents antiangiogenic and vascular-disrupting activities. METHODS: The effects of plocabulin on microtubule network and dynamics were studied on HUVEC endothelial cells. We have also studied its effects on capillary tube structures formation or destabilization in three-dimensional collagen matrices. In vivo experiments were performed on different tumor cell lines. RESULTS: In vitro studies show that, at picomolar concentrations, plocabulin inhibits microtubule dynamics in endothelial cells. This subsequently disturbs the microtubule network inducing changes in endothelial cell morphology and causing the collapse of angiogenic vessels, or the suppression of the angiogenic process by inhibiting the migration and invasion abilities of endothelial cells. This rapid collapse of the endothelial tubular network in vitro occurs in a concentration-dependent manner and is observed at concentrations lower than that affecting cell survival. The in vitro findings were confirmed in tumor xenografts where plocabulin treatment induced a large reduction in vascular volume and induction of extensive necrosis in tumors, consistent with antivascular effects. CONCLUSIONS: Altogether, these data suggest that an antivascular mechanism is contributing to the antitumor activities of plocabulin.


Assuntos
Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Microtúbulos/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Policetídeos/farmacologia , Pironas/farmacologia , Tubulina (Proteína)/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Camundongos Nus , Microtúbulos/metabolismo , Neoplasias/irrigação sanguínea , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neovascularização Patológica/prevenção & controle , Policetídeos/metabolismo , Ligação Proteica , Pironas/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Sci Rep ; 8(1): 1140, 2018 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348621

RESUMO

The design of living cell studies aimed at deciphering the mechanism of action of drugs targeting proteins with multiple functions, expressed in a wide range of concentrations and cellular locations, is a real challenge. We recently showed that the antitumor drug plitidepsin (APL) localizes sufficiently close to the elongation factor eEF1A2 so as to suggest the formation of drug-protein complexes in living cells. Here we present an extension of our previous micro-spectroscopy study, that combines Generalized Polarization (GP) images, with the phasor approach and fluorescence lifetime imaging microscopy (FLIM), using a 7-aminocoumarin drug analog (APL*) as fluorescence tracer. Using the proposed methodology, we were able to follow in real time the formation and relative distribution of two sets of APL-target complexes in live cells, revealing two distinct patterns of behavior for HeLa-wt and APL resistant HeLa-APL-R cells. The information obtained may complement and facilitate the design of new experiments and the global interpretation of the results obtained with other biochemical and cell biology methods, as well as possibly opening new avenues of study to decipher the mechanism of action of new drugs.


Assuntos
Descoberta de Drogas , Regulação da Expressão Gênica/efeitos dos fármacos , Fator 1 de Elongação de Peptídeos/genética , Fator 1 de Elongação de Peptídeos/metabolismo , Catequina/análogos & derivados , Catequina/farmacologia , Descoberta de Drogas/métodos , Células HeLa , Humanos , Espaço Intracelular/metabolismo , Microscopia de Fluorescência , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Ligação Proteica , Transporte Proteico
16.
Br J Cancer ; 117(5): 628-638, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28683469

RESUMO

BACKGROUND: Lurbinectedin is a novel anticancer agent currently undergoing late-stage (Phase II /III) clinical evaluation in platinum-resistant ovarian, BRCA1/2-mutated breast and small-cell lung cancer. Lurbinectedin is structurally related to trabectedin and it inhibits active transcription and the DNA repair machinery in tumour cells. METHODS: In this study we investigated whether lurbinectedin has the ability to modulate the inflammatory microenvironment and the viability of myeloid cells in tumour-bearing mice. RESULTS: Administration of lurbinectedin significantly and selectively decreased the number of circulating monocytes and, in tumour tissues, that of macrophages and vessels. Similar findings were observed when a lurbinectedin-resistant tumour variant was used, indicating a direct effect of lurbinectedin on the tumour microenviroment. In vitro, lurbinectedin induced caspase-8-dependent apoptosis of human purified monocytes, whereas at low doses it significantly inhibited the production of inflammatory/growth factors (CCL2, CXCL8 and VEGF) and dramatically impaired monocyte adhesion and migration ability. These findings were supported by the strong inhibition of genes of the Rho-GTPase family in lurbinectedin-treated monocytes. CONCLUSIONS: The results illustrate that lurbinectedin affects at multiple levels the inflammatory microenvironment by acting on the viability and functional activity of mononuclear phagocytes. These peculiar effects, combined with its intrinsic activity against cancer cells, make lurbinectedin a compound of particular interest in oncology.


Assuntos
Antineoplásicos Alquilantes/farmacologia , Carbolinas/farmacologia , Fibrossarcoma/tratamento farmacológico , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Macrófagos , Monócitos/efeitos dos fármacos , Monócitos/fisiologia , Neoplasias Ovarianas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Antineoplásicos Alquilantes/uso terapêutico , Apoptose/efeitos dos fármacos , Carbolinas/uso terapêutico , Caspase 8/metabolismo , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiocina CCL2/biossíntese , Dioxóis/farmacologia , Regulação para Baixo , Feminino , Fibrossarcoma/imunologia , Expressão Gênica/efeitos dos fármacos , Perfilação da Expressão Gênica , Células HL-60 , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Humanos , Interleucina-8/biossíntese , Contagem de Leucócitos , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/metabolismo , Neovascularização Patológica/prevenção & controle , Tetra-Hidroisoquinolinas/farmacologia , Trabectedina , Microambiente Tumoral/imunologia , Células U937 , Fator A de Crescimento do Endotélio Vascular/biossíntese , Ensaios Antitumorais Modelo de Xenoenxerto , Proteínas rho de Ligação ao GTP/genética
17.
Br J Cancer ; 116(3): 335-343, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28072764

RESUMO

BACKGROUND: Juvenile myelomonocytic leukaemia (JMML) and chronic myelomonocytic leukaemia (CMML) are myelodysplastic myeloproliferative (MDS/MPN) neoplasms with unfavourable prognosis and without effective chemotherapy treatment. Trabectedin is a DNA minor groove binder acting as a modulator of transcription and interfering with DNA repair mechanisms; it causes selective depletion of cells of the myelomonocytic lineage. We hypothesised that trabectedin might have an antitumour effect on MDS/MPN. METHODS: Malignant CD14+ monocytes and CD34+ haematopoietic progenitor cells were isolated from peripheral blood/bone marrow mononuclear cells. The inhibition of CFU-GM colonies and the apoptotic effect on CD14+ and CD34+ induced by trabectedin were evaluated. Trabectedin's effects were also investigated in vitro on THP-1, and in vitro and in vivo on MV-4-11 cell lines. RESULTS: On CMML/JMML cells, obtained from 20 patients with CMML and 13 patients with JMML, trabectedin - at concentration pharmacologically reasonable, 1-5 nM - strongly induced apoptosis and inhibition of growth of haematopoietic progenitors (CFU-GM). In these leukaemic cells, trabectedin downregulated the expression of genes belonging to the Rho GTPases pathway (RAS superfamily) having a critical role in cell growth and cytoskeletal dynamics. Its selective activity on myelomonocytic malignant cells was confirmed also on in vitro THP-1 cell line and on in vitro and in vivo MV-4-11 cell line models. CONCLUSIONS: Trabectedin could be good candidate for clinical studies in JMML/CMML patients.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Dioxóis/uso terapêutico , Leucemia Mielomonocítica Crônica/tratamento farmacológico , Leucemia Mielomonocítica Juvenil/tratamento farmacológico , Síndromes Mielodisplásicas/tratamento farmacológico , Tetra-Hidroisoquinolinas/uso terapêutico , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Feminino , Perfilação da Expressão Gênica , Humanos , Leucemia Mielomonocítica Crônica/genética , Leucemia Mielomonocítica Crônica/patologia , Leucemia Mielomonocítica Juvenil/genética , Leucemia Mielomonocítica Juvenil/patologia , Camundongos , Camundongos Nus , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/patologia , Trabectedina , Ensaio Tumoral de Célula-Tronco
18.
Cancer Res ; 76(22): 6657-6668, 2016 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-27697767

RESUMO

There is a great need to develop novel approaches to target oncogenic transcription factors with small molecules. Ewing sarcoma is emblematic of this need, as it depends on the continued activity of the EWS-FLI1 transcription factor to maintain the malignant phenotype. We have previously shown that the small molecule trabectedin interferes with EWS-FLI1. Here, we report important mechanistic advances and a second-generation inhibitor to provide insight into the therapeutic targeting of EWS-FLI1. We discovered that trabectedin functionally inactivated EWS-FLI1 by redistributing the protein within the nucleus to the nucleolus. This effect was rooted in the wild-type functions of the EWSR1, compromising the N-terminal half of the chimeric oncoprotein, which is known to be similarly redistributed within the nucleus in the presence of UV light damage. A second-generation trabectedin analogue lurbinectedin (PM01183) caused the same nuclear redistribution of EWS-FLI1, leading to a loss of activity at the promoter, mRNA, and protein levels of expression. Tumor xenograft studies confirmed this effect, and it was increased in combination with irinotecan, leading to tumor regression and replacement of Ewing sarcoma cells with benign fat cells. The net result of combined lurbinectedin and irinotecan treatment was a complete reversal of EWS-FLI1 activity and elimination of established tumors in 30% to 70% of mice after only 11 days of therapy. Our results illustrate the preclinical safety and efficacy of a disease-specific therapy targeting the central oncogenic driver in Ewing sarcoma. Cancer Res; 76(22); 6657-68. ©2016 AACR.


Assuntos
Camptotecina/análogos & derivados , Proteínas de Fusão Oncogênica/genética , Proteínas Oncogênicas/genética , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/tratamento farmacológico , Animais , Camptotecina/farmacologia , Camptotecina/uso terapêutico , Linhagem Celular Tumoral , Feminino , Humanos , Irinotecano , Camundongos , Camundongos Nus , Sarcoma de Ewing/patologia
19.
Dis Model Mech ; 9(12): 1461-1471, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27780828

RESUMO

We explored whether the combination of lurbinectedin (PM01183) with the antimetabolite gemcitabine could result in a synergistic antitumor effect in pancreatic ductal adenocarcinoma (PDA) mouse models. We also studied the contribution of lurbinectedin to this synergism. This drug presents a dual pharmacological effect that contributes to its in vivo antitumor activity: (i) specific binding to DNA minor grooves, inhibiting active transcription and DNA repair; and (ii) specific depletion of tumor-associated macrophages (TAMs). We evaluated the in vivo antitumor activity of lurbinectedin and gemcitabine as single agents and in combination in SW-1990 and MIA PaCa-2 cell-line xenografts and in patient-derived PDA models (AVATAR). Lurbinectedin-gemcitabine combination induced a synergistic effect on both MIA PaCa-2 [combination index (CI)=0.66] and SW-1990 (CI=0.80) tumor xenografts. It also induced complete tumor remissions in four out of six patient-derived PDA xenografts. This synergism was associated with enhanced DNA damage (anti-γ-H2AX), cell cycle blockage, caspase-3 activation and apoptosis. In addition to the enhanced DNA damage, which is a consequence of the interaction of the two drugs with the DNA, lurbinectedin induced TAM depletion leading to cytidine deaminase (CDA) downregulation in PDA tumors. This effect could, in turn, induce an increase of gemcitabine-mediated DNA damage that was especially relevant in high-density TAM tumors. These results show that lurbinectedin can be used to develop 'molecularly targeted' combination strategies.


Assuntos
Adenocarcinoma/tratamento farmacológico , Carbolinas/uso terapêutico , Desoxicitidina/análogos & derivados , Compostos Heterocíclicos de 4 ou mais Anéis/uso terapêutico , Macrófagos/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Adenocarcinoma/patologia , Animais , Apoptose/efeitos dos fármacos , Carbolinas/farmacologia , Caspase 3/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Citidina Desaminase/metabolismo , Dano ao DNA , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Sinergismo Farmacológico , Ativação Enzimática/efeitos dos fármacos , Feminino , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos Nus , Neoplasias Pancreáticas/patologia , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina , Neoplasias Pancreáticas
20.
Sci Rep ; 6: 35100, 2016 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-27713531

RESUMO

eEF1A2 is one of the isoforms of the alpha subunit of the eukaryotic Elongation Factor 1. It is overexpressed in human tumors and is endowed with oncogenic properties, favoring tumor cell proliferation while inhibiting apoptosis. We demonstrate that plitidepsin, an antitumor agent of marine origin that has successfully completed a phase-III clinical trial for multiple myeloma, exerts its antitumor activity by targeting eEF1A2. The drug interacts with eEF1A2 with a KD of 80 nM and a target residence time of circa 9 min. This protein was also identified as capable of binding [14C]-plitidepsin in a cell lysate from K-562 tumor cells. A molecular modelling approach was used to identify a favorable binding site for plitidepsin at the interface between domains 1 and 2 of eEF1A2 in the GTP conformation. Three tumor cell lines selected for at least 100-fold more resistance to plitidepsin than their respective parental cells showed reduced levels of eEF1A2 protein. Ectopic expression of eEF1A2 in resistant cells restored the sensitivity to plitidepsin. FLIM-phasor FRET experiments demonstrated that plitidepsin localizes in tumor cells sufficiently close to eEF1A2 as to suggest the formation of drug-protein complexes in living cells. Altogether, our results strongly suggest that eEF1A2 is the primary target of plitidepsin.


Assuntos
Antineoplásicos/farmacologia , Depsipeptídeos/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Fator 1 de Elongação de Peptídeos/antagonistas & inibidores , Animais , Sítios de Ligação/fisiologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Células HeLa , Humanos , Peptídeos Cíclicos , Domínios Proteicos/fisiologia , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA