Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bacteriol ; 185(23): 6860-9, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14617650

RESUMO

Certain oral treponemes express a highly proteolytic phenotype and have been associated with periodontal diseases. The periodontal pathogen Treponema denticola produces dentilisin, a serine protease of the subtilisin family. The two-gene operon prcA-prtP is required for expression of active dentilisin (PrtP), a putative lipoprotein attached to the treponeme's outer membrane or sheath. The purpose of this study was to examine the diversity and structure of treponemal subtilisin-like proteases in order to better understand their distribution and function. The complete sequences of five prcA-prtP operons were determined for Treponema lecithinolyticum, "Treponema vincentii," and two canine species. Partial operon sequences were obtained for T. socranskii subsp. 04 as well as 450- to 1,000-base fragments of prtP genes from four additional treponeme strains. Phylogenetic analysis demonstrated that the sequences fall into two paralogous families. The first family includes the sequence from T. denticola. Treponemes possessing this operon family express chymotrypsin-like protease activity and can cleave the substrate N-succinyl-alanyl-alanyl-prolyl-phenylalanine-p-nitroanilide (SAAPFNA). Treponemes possessing the second paralog family do not possess chymotrypsin-like activity or cleave SAAPFNA. Despite examination of a range of protein and peptide substrates, the specificity of the second protease family remains unknown. Each of the fully sequenced prcA and prtP genes contains a 5' hydrophobic leader sequence with a treponeme lipobox. The two paralogous families of treponeme subtilisins represent a new subgroup within the subtilisin family of proteases and are the only subtilisin lipoprotein family. The present study demonstrated that the subtilisin paralogs comprising a two-gene operon are widely distributed among treponemes.


Assuntos
Proteínas de Bactérias , Óperon , Subtilisinas/genética , Treponema/genética , Fatores de Virulência/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Quimotripsina/genética , Cães , Humanos , Lipoproteínas/genética , Dados de Sequência Molecular , Oligopeptídeos/metabolismo , Peptídeo Hidrolases , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Alinhamento de Sequência , Especificidade por Substrato , Subtilisinas/metabolismo , Treponema/enzimologia
2.
J Bacteriol ; 185(18): 5591-601, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12949112

RESUMO

The complete 2,343,479-bp genome sequence of the gram-negative, pathogenic oral bacterium Porphyromonas gingivalis strain W83, a major contributor to periodontal disease, was determined. Whole-genome comparative analysis with other available complete genome sequences confirms the close relationship between the Cytophaga-Flavobacteria-Bacteroides (CFB) phylum and the green-sulfur bacteria. Within the CFB phyla, the genomes most similar to that of P. gingivalis are those of Bacteroides thetaiotaomicron and B. fragilis. Outside of the CFB phyla the most similar genome to P. gingivalis is that of Chlorobium tepidum, supporting the previous phylogenetic studies that indicated that the Chlorobia and CFB phyla are related, albeit distantly. Genome analysis of strain W83 reveals a range of pathways and virulence determinants that relate to the novel biology of this oral pathogen. Among these determinants are at least six putative hemagglutinin-like genes and 36 previously unidentified peptidases. Genome analysis also reveals that P. gingivalis can metabolize a range of amino acids and generate a number of metabolic end products that are toxic to the human host or human gingival tissue and contribute to the development of periodontal disease.


Assuntos
Genoma Bacteriano , Porphyromonas gingivalis/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transporte Biológico/genética , Hemaglutininas/genética , Humanos , Dados de Sequência Molecular , Boca/microbiologia , Doenças Periodontais/microbiologia , Filogenia , Porphyromonas gingivalis/metabolismo , Porphyromonas gingivalis/patogenicidade , Virulência/genética
3.
J Clin Microbiol ; 40(3): 1001-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11880430

RESUMO

Although substantial epidemiologic evidence links Streptococcus mutans to caries, the pathobiology of caries may involve more complex communities of bacterial species. Molecular methods for bacterial identification and enumeration now make it possible to more precisely study the microbiota associated with dental caries. The purpose of this study was to compare the bacteria found in early childhood caries (ECC) to those found in caries-free children by using molecular identification methods. Cloning and sequencing of bacterial 16S ribosomal DNAs from a healthy subject and a subject with ECC were used for identification of novel species or uncultivated phylotypes and species not previously associated with dental caries. Ten novel phylotypes were identified. A number of species or phylotypes that may play a role in health or disease were identified and warrant further investigation. In addition, quantitative measurements for 23 previously known bacterial species or species groups were obtained by a reverse capture checkerboard assay for 30 subjects with caries and 30 healthy controls. Significant differences were observed for nine species: S. sanguinis was associated with health and, in order of decreasing cell numbers, Actinomyces gerencseriae, Bifidobacterium, S. mutans, Veillonella, S. salivarius, S. constellatus, S. parasanguinis, and Lactobacillus fermentum were associated with caries. These data suggest that A. gerencseriae and other Actinomyces species may play an important role in caries initiation and that a novel Bifidobacterium may be a major pathogen in deep caries. Further investigation could lead to the identification of targets for biological interventions in the caries process and thereby contribute to improved prevention of and treatment for this significant public health problem.


Assuntos
Bactérias/isolamento & purificação , Cárie Dentária/microbiologia , Bactérias/genética , Criança , Pré-Escolar , Feminino , Humanos , Masculino , Filogenia
4.
Ann Periodontol ; 7(1): 8-16, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16013212

RESUMO

BACKGROUND: Necrotizing ulcerative periodontitis (NUP) is a painful and potentially debilitating affliction that affects about 2% to 6% of HIV-positive subjects. NUP may be caused by specific microorganisms that are presently unknown or by microbial species not usually thought to cause periodontal infections. The purpose of this study was to define the bacterial species associated with NUP in HIV-positive patients. METHODS: 16S rRNA bacterial genes of DNA isolated from subgingival plaque of 8 HIV-positive subjects with NUP were amplified by polymerase chain reaction (PCR) and cloned into Escherichia coli. The sequences of cloned inserts were used to determine species identity or closest relatives by comparison with known sequences. The microbial profiles in subgingival plaque of subjects with NUP, chronic periodontitis, and periodontal health were compared using a battery of over 200 oligonucleotide probes in a PCR-based, reverse-capture, checkerboard DNA-DNA hybridization assay. RESULTS: Sequence analysis of over 400 clones revealed 108 species; 65 were "uncultivable" phylotypes, of which 26 were novel to NUP subjects. Species or phylotypes most commonly detected were Bulleidia extructa, Dialister, Fusobacterium, Selenomonas, Peptostreptococcus, Veillonella, and the phylum TM7. Based on sequence analysis and checkerboard analysis, NUP did not possess the classical periodontal pathogens such as Porphyromonas gingivalis. Otherwise, the microbial profiles of NUP and periodontitis had many similarities. The microbial profiles of subgingival plaque from periodontally healthy subjects were different and less complex in comparison to the profiles of both disease groups. CONCLUSIONS: Certain species appear to be associated with health and periodontal diseases. The putative pathogens associated with periodontal disease in HIV-negative subjects are not associated with NUP in HIV-positive subjects.


Assuntos
Técnicas de Tipagem Bacteriana/métodos , Placa Dentária/microbiologia , Gengivite Ulcerativa Necrosante/microbiologia , Soropositividade para HIV/microbiologia , Adulto , DNA Bacteriano/análise , Feminino , Gengivite Ulcerativa Necrosante/complicações , Soropositividade para HIV/complicações , Humanos , Masculino , Análise de Sequência com Séries de Oligonucleotídeos/métodos , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA