Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
ACS Appl Nano Mater ; 7(10): 11088-11096, 2024 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-38808309

RESUMO

The development of nanoribbon-like structures is an effective strategy to harness the potential benefits of graphenic materials due to their excellent electrical properties, advantageous edge sites, rapid electron transport, and large specific area. Herein, parallel and connected magnetic nanostructured nanoribbons are obtained through the synthesis of reduced graphene oxide (rGO) using NiCl2 as a precursor with potential applications in nascent electronic and magnetic devices. Several analytical techniques have been used for the thorough characterization of the modified surfaces. Atomic force microscopy (AFM) shows the characteristic topographical features of the nanoribbons. While X-ray photoelectron spectroscopy (XPS), X-ray diffraction (XRD), and Raman spectroscopy provided information on the chemical state of Ni and graphene-like structures, magnetic force microscopy (MFM) and scanning Kelvin probe microscopy (SKPFM) confirmed the preferential concentration of Ni onto rGO nanoribbons. These results indicate that the synthesized material shows 1D ordering of nickel nanoparticles (NiNPs)-decorating tiny rGO flakes into thin threads and the subsequent 2D arrangement of the latter into parallel ribbons following the topography of the HOPG basal plane.

2.
Molecules ; 29(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474584

RESUMO

The integration of clean energy generation with wastewater treatment holds promise for addressing both environmental and energy concerns. Focusing on photocatalytic hydrogen production and wastewater treatment, this study introduces PdIn/TiO2 catalysts for the simultaneous removal of the pharmaceutical contaminant paracetamol (PTM) and hydrogen production. Physicochemical characterization showed a high distribution of Pd and In on the support as well as a high interaction with it. The Pd and In deposition enhance the light absorption capability and significantly improve the hydrogen evolution reaction (HER) in the absence and presence of paracetamol compared to TiO2. On the other hand, the photoelectroxidation of PTM at TiO2 and PdIn/TiO2 follows the full mineralization path and, accordingly, is limited by the adsorption of intermediate species on the electrode surface. Thus, PdIn-doped TiO2 stands out as a promising photoelectrocatalyst, showcasing enhanced physicochemical properties and superior photoelectrocatalytic performance. This underscores its potential for both environmental remediation and sustainable hydrogen production.

3.
ACS Catal ; 11(5): 2583-2595, 2021 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-33815893

RESUMO

The complex α-[Fe(mcp)(OTf)2] (mcp = N,N'-dimethyl-N,N'-bis(pyridin-2-ylmethyl)-cyclohexane-1,2-diamine and OTf = trifluoromethanesulfonate anion) was reported in 2011 by some of us as an active water oxidation (WO) catalyst in the presence of sacrificial oxidants. However, because chemical oxidants are likely to take part in the reaction mechanism, mechanistic electrochemical studies are critical in establishing to what extent previous studies with sacrificial reagents have actually been meaningful. In this study, the complex α-[Fe(mcp)(OTf)2] and its analogues were investigated electrochemically under both acidic and neutral conditions. All the systems under investigation proved to be electrochemically active toward the WO reaction, with no major differences in activity despite the structural changes. Our findings show that WO-catalyzed by mcp-iron complexes proceeds via homogeneous species, whereas the analogous manganese complex forms a heterogeneous deposit on the electrode surface. Mechanistic studies show that the reaction proceeds with a different rate-determining step (rds) than what was previously proposed in the presence of chemical oxidants. Moreover, the different kinetic isotope effect (KIE) values obtained electrochemically at pH 7 (KIE ∼ 10) and at pH 1 (KIE = 1) show that the reaction conditions have a remarkable effect on the rds and on the mechanism. We suggest a proton-coupled electron transfer (PCET) as the rds under neutral conditions, whereas at pH 1 the rds is most likely an electron transfer (ET).

4.
Chemistry ; 27(15): 4946-4954, 2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33350013

RESUMO

Oxoiron(IV) complexes bearing tetradentate ligands have been extensively studied as models for the active oxidants in non-heme iron-dependent enzymes. These species are commonly generated by oxidation of their ferrous precursors. The mechanisms of these reactions have seldom been investigated. In this work, the reaction kinetics of complexes [FeII (CH3 CN)2 L](SbF6 )2 ([1](SbF6 )2 and [2](SbF6 )2 ) and [FeII (CF3 SO3 )2 L] ([1](OTf)2 and [2](OTf)2 (1, L=Me,H Pytacn; 2, L=nP,H Pytacn; R,R' Pytacn=1-[(6-R'-2-pyridyl)methyl]-4,7- di-R-1,4,7-triazacyclononane) with Bu4 NIO4 to form the corresponding [FeIV (O)(CH3 CN)L]2+ (3, L=Me,H Pytacn; 4, L=nP,H Pytacn) species was studied in acetonitrile/acetone at low temperatures. The reactions occur in a single kinetic step with activation parameters independent of the nature of the anion and similar to those obtained for the substitution reaction with Cl- as entering ligand, which indicates that formation of [FeIV (O)(CH3 CN)L]2+ is kinetically controlled by substitution in the starting complex to form [FeII (IO4 )(CH3 CN)L]+ intermediates that are converted rapidly to oxo complexes 3 and 4. The kinetics of the reaction is strongly dependent on the spin state of the starting complex. A detailed analysis of the magnetic susceptibility and kinetic data for the triflate complexes reveals that the experimental values of the activation parameters for both complexes are the result of partial compensation of the contributions from the thermodynamic parameters for the spin-crossover equilibrium and the activation parameters for substitution. The observation of these opposite and compensating effects by modifying the steric hindrance at the ligand illustrates so far unconsidered factors governing the mechanism of oxygen atom transfer leading to high-valent iron oxo species.

5.
J Am Soc Mass Spectrom ; 30(10): 1923-1933, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31399940

RESUMO

We report and analyze chemoselectivity in the gas phase reactions of cycloalkenes (cyclohexene, cycloheptene, cis-cyclooctene, 1,4-cyclohexadiene) with a non-heme iron(IV)-oxo complex [(PyTACN)Fe(O)(Cl)]+, which models the active species in iron-dependent halogenases. Unlike in the halogenases, we did not observe any chlorination of the substrate. However, we observed two other reaction pathways: allylic hydrogen atom transfer (HAT) and alkene epoxidation. The HAT is clearly preferred in the case of 1,4-cyclohexadiene, both pathways have comparable reaction rates in reaction with cyclohexene, and epoxidation is strongly favored in reactions with cycloheptene and cis-cyclooctene. This preference for epoxidation differs from the reactivity of iron(IV)-oxo complexes in the condensed phase, where HAT usually prevails. To understand the observed selectivity, we analyze effects of the substrate, spin state, and solvation. Our DFT and CASPT2 calculations suggest that all the reactions occur on the quintet potential energy surface. The DFT-calculated energies of the transition states for the epoxidation and hydroxylation pathways explain the observed chemoselectivity. The SMD implicit solvation model predicts the relative increase of the epoxidation barriers with solvent polarity, which explains the clear preference of HAT in the condensed phase.

6.
J Am Chem Soc ; 141(38): 15078-15091, 2019 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-31469954

RESUMO

This work directly compares the spectroscopic and reactivity properties of an oxoiron(IV) and an oxoiron(V) complex that are supported by the same neutral tetradentate N-based PyNMe3 ligand. A complete spectroscopic characterization of the oxoiron(IV) species (2) reveals that this compound exists as a mixture of two isomers. The reactivity of the thermodynamically more stable oxoiron(IV) isomer (2b) is directly compared to that exhibited by the previously reported 1e--oxidized analogue [FeV(O)(OAc)(PyNMe3)]2+ (3). Our data indicates that 2b is 4 to 5 orders of magnitude slower than 3 in hydrogen atom transfer (HAT) from C-H bonds. The origin of this huge difference lies in the strength of the O-H bond formed after HAT by the oxoiron unit, the O-H bond derived from 3 being about 20 kcal·mol-1 stronger than that from 2b. The estimated bond strength of the FeIVO-H bond of 100 kcal·mol-1 is very close to the reported values for highly active synthetic models of compound I of cytochrome P450. In addition, this comparative study provides direct experimental evidence that the lifetime of the carbon-centered radical that forms after the initial HAT by the high valent oxoiron complex depends on the oxidation state of the nascent Fe-OH complex. Complex 2b generates long-lived carbon-centered radicals that freely diffuse in solution, while 3 generates short-lived caged radicals that rapidly form product C-OH bonds, so only 3 engages in stereoretentive hydroxylation reactions. Thus, the oxidation state of the iron center modulates not only the rate of HAT but also the rate of ligand rebound.


Assuntos
Compostos de Ferro/química , Oxigênio/química , Compostos de Ferro/síntese química , Ligantes , Estrutura Molecular , Espectrofotometria Ultravioleta , Espectroscopia de Luz Próxima ao Infravermelho , Análise Espectral Raman , Espectroscopia por Absorção de Raios X
7.
Chem Sci ; 10(41): 9513-9529, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055323

RESUMO

High valent iron species are very reactive molecules involved in oxidation reactions of relevance to biology and chemical synthesis. Herein we describe iron(iv)-tosylimido complexes [FeIV(NTs)(MePy2tacn)](OTf)2 (1(IV)[double bond, length as m-dash]NTs) and [FeIV(NTs)(Me2(CHPy2)tacn)](OTf)2 (2(IV)[double bond, length as m-dash]NTs), (MePy2tacn = N-methyl-N,N-bis(2-picolyl)-1,4,7-triazacyclononane, and Me2(CHPy2)tacn = 1-(di(2-pyridyl)methyl)-4,7-dimethyl-1,4,7-triazacyclononane, Ts = Tosyl). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are rare examples of octahedral iron(iv)-imido complexes and are isoelectronic analogues of the recently described iron(iv)-oxo complexes [FeIV(O)(L)]2+ (L = MePy2tacn and Me2(CHPy2)tacn, respectively). 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs are metastable and have been spectroscopically characterized by HR-MS, UV-vis, 1H-NMR, resonance Raman, Mössbauer, and X-ray absorption (XAS) spectroscopy as well as by DFT computational methods. Ferric complexes [FeIII(HNTs)(L)]2+, 1(III)-NHTs (L = MePy2tacn) and 2(III)-NHTs (L = Me2(CHPy2)tacn) have been isolated after the decay of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs in solution, spectroscopically characterized, and the molecular structure of [FeIII(HNTs)(MePy2tacn)](SbF6)2 determined by single crystal X-ray diffraction. Reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with different p-substituted thioanisoles results in the transfer of the tosylimido moiety to the sulphur atom producing sulfilimine products. In these reactions, 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs behave as single electron oxidants and Hammett analyses of reaction rates evidence that tosylimido transfer is more sensitive than oxo transfer to charge effects. In addition, reaction of 1(IV)[double bond, length as m-dash]NTs and 2(IV)[double bond, length as m-dash]NTs with hydrocarbons containing weak C-H bonds results in the formation of 1(III)-NHTs and 2(III)-NHTs respectively, along with the oxidized substrate. Kinetic analyses indicate that reactions proceed via a mechanistically unusual HAT reaction, where an association complex precedes hydrogen abstraction.

8.
J Am Chem Soc ; 141(1): 323-333, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30497265

RESUMO

The nature of the oxidizing species in water oxidation reactions with chemical oxidants catalyzed by α-[Fe(OTf)2(mcp)] (1α; mcp = N, N'-dimethyl- N, N'-bis(pyridin-2-ylmethyl)cyclohexane-1,2-diamine, OTf = trifluoromethanesulfonate anion) and ß-[Fe(OTf)2(mcp)] (1ß) has been investigated. Mössbauer spectroscopy provides definitive evidence that 1α and 1ß generate oxoiron(IV) species as the resting state. Decomposition paths of the catalysts have been investigated by identifying and quantifying ligand fragments that form upon degradation. This analysis correlates the water oxidation activity of 1α and 1ß with stability against oxidative damage of the ligand via aliphatic C-H oxidation. The site of degradation and the relative stability against oxidative degradation are shown to be dependent on the topology of the catalyst. Furthermore, the mechanisms of catalyst degradation have been rationalized by computational analyses, which also explain why the topology of the catalyst enforces different oxidation-sensitive sites. This information has served in creating catalysts where sensitive C-H bonds have been replaced by C-D bonds. The deuterated analogues D4-α-[Fe(OTf)2(mcp)] (D4-1α), D4-ß-[Fe(OTf)2(mcp)] (D4-1ß), and D6-ß-[Fe(OTf)2(mcp)] (D6-1ß) were prepared, and their catalytic activity has been studied. D4-1α proves to be an extraordinarily active and efficient catalyst (up to 91% of O2 yield); it exhibits initial reaction rates identical with those of its protio analogue, but it is substantially more robust toward oxidative degradation and yields more than 3400 TON ( n(O2)/ n(Fe)). Altogether this evidences that the water oxidation catalytic activity is performed by a well-defined coordination complex and not by iron oxides formed after oxidative degradation of the ligands.

9.
Bioinorg Chem Appl ; 2018: 2379141, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30154831

RESUMO

The development of artificial photosynthetic technologies able to produce solar-fuels from CO2 reduction is a fundamental task that requires the employment of specific catalysts being accomplished. Besides, effective catalysts are also demanded to capture atmospheric CO2, mitigating the effects of its constantly increasing emission. Biomimetic transition metal complexes are considered ideal platforms to develop efficient and selective catalysts to be implemented in electrocatalytic and photocatalytic devices. These catalysts, designed according to the inspiration provided by nature, are simple synthetic molecular systems capable of mimic features of the enzymatic activity. The present review aims to focus the attention on the mechanistic and structural aspects highlighted to be necessary to promote a proper catalytic activity. The determination of these characteristics is of interest both for clarifying aspects of the catalytic cycle of natural enzymes that are still unknown and for developing synthetic molecular catalysts that can readily be applied to artificial photosynthetic devices.

10.
J Am Chem Soc ; 139(27): 9168-9177, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28598599

RESUMO

Iron complex [FeIII(N3)(MePy2tacn)](PF6)2 (1), containing a neutral triazacyclononane-based pentadentate ligand, and a terminally bound azide ligand has been prepared and spectroscopically and structurally characterized. Structural details, magnetic susceptibility data, and Mössbauer spectra demonstrate that 1 has a low-spin (S = 1/2) ferric center. X-ray diffraction analysis of 1 reveals remarkably short Fe-N (1.859 Å) and long FeN-N2 (1.246 Å) distances, while the FT-IR spectra show an unusually low N-N stretching frequency (2019 cm-1), suggesting that the FeN-N2 bond is particularly weak. Photolysis of 1 at 470 or 530 nm caused N2 elimination and generation of a nitrido species that on the basis of Mössbauer, magnetic susceptibility, EPR, and X-ray absorption in conjunction with density functional theory computational analyses is formulated as [FeV(N)(MePy2tacn)]2+ (2). Results indicate that 2 is a low-spin (S = 1/2) iron(V) species, which exhibits a short Fe-N distance (1.64 Å), as deduced from extended X-ray absorption fine structure analysis. Compound 2 is only stable at cryogenic (liquid N2) temperatures, and frozen solutions as well as solid samples decompose rapidly upon warming, producing N2. However, the high-valent compound could be generated in the gas phase, and its reactivity against olefins, sulfides, and substrates with weak C-H bonds studied. Compound 2 proved to be a powerful two-electron oxidant that can add the nitrido ligand to olefin and sulfide sites as well as oxidize cyclohexadiene substrates to benzene in a formal H2-transfer process. In summary, compound 2 constitutes the first case of an octahedral FeV(N) species prepared within a neutral ligand framework and adds to the few examples of FeV species that could be spectroscopically and chemically characterized.

11.
J Am Chem Soc ; 138(43): 14388-14397, 2016 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27723326

RESUMO

The selective annulation reaction of alkynes with substrates containing inert C-H bonds using cobalt as catalyst is currently a topic attracting significant interest. Unfortunately, the mechanism of this transformation is still relatively poorly understood, with little experimental evidence for intermediates, although an organometallic Co(III) species is generally implicated. Herein, we describe a rare example of the preparation and characterization of benchtop-stable organometallic aryl-Co(III) compounds (NMR, HRMS, XAS, and XRD) prepared through a C(sp2)-H activation, using a model macrocyclic arene substrate. Furthermore, we provide crystallographic evidence of an organometallic aryl-Co(III) intermediate proposed in 8-aminoquinoline-directed Co-catalyzed C-H activation processes. Subsequent insights obtained from the application of our new organometallic aryl-Co(III) compounds in alkyne annulation reactions are also disclosed. Evidence obtained from the resulting regioselectivity of the annulation reactions and DFT studies indicates that a mechanism involving an organometallic aryl-Co(III)-alkynyl intermediate species is preferred for terminal alkynes, in contrast to the generally accepted migratory insertion pathway.

12.
J Am Chem Soc ; 138(39): 12987-12996, 2016 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-27598293

RESUMO

Terminal high-valent metal-oxygen species are key reaction intermediates in the catalytic cycle of both enzymes (e.g., oxygenases) and synthetic oxidation catalysts. While tremendous efforts have been directed toward the characterization of the biologically relevant terminal manganese-oxygen and iron-oxygen species, the corresponding analogues based on late-transition metals such as cobalt, nickel or copper are relatively scarce. This scarcity is in part related to the "Oxo Wall" concept, which predicts that late transition metals cannot support a terminal oxido ligand in a tetragonal environment. Here, the nickel(II) complex (1) of the tetradentate macrocyclic ligand bearing a 2,6-pyridinedicarboxamidate unit is shown to be an effective catalyst in the chlorination and oxidation of C-H bonds with sodium hypochlorite as terminal oxidant in the presence of acetic acid (AcOH). Insight into the active species responsible for the observed reactivity was gained through the study of the reaction of 1 with ClO- at low temperature by UV-vis absorption, resonance Raman, EPR, ESI-MS, and XAS analyses. DFT calculations aided the assignment of the trapped chromophoric species (3) as a nickel-hypochlorite species. Despite the fact that the formal oxidation state of the nickel in 3 is +4, experimental and computational analysis indicate that 3 is best formulated as a NiIII complex with one unpaired electron delocalized in the ligands surrounding the metal center. Most remarkably, 3 reacts rapidly with a range of substrates including those with strong aliphatic C-H bonds, indicating the direct involvement of 3 in the oxidation/chlorination reactions observed in the 1/ClO-/AcOH catalytic system.

13.
Chem Commun (Camb) ; 52(73): 11008-11, 2016 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-27538788

RESUMO

A series of oligoarginine peptide derivatives containing cyclometallated iridium(iii) units display remarkable cytotoxicity, comparable to that of cisplatin. In vitro studies with unilamellar vesicles support a membrane-disrupting mechanism of action.

14.
Dalton Trans ; 45(3): 881-5, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26523378

RESUMO

We have applied solid-phase synthesis methods for the construction of tris(bipyridyl) peptidic ligands that coordinate Fe(ii) ions with high affinity and fold into stable mononuclear metallopeptides. The main factors influencing the folding pathway and chiral control of the peptidic ligands around the metal ions have been studied both by experimental techniques (CD, UV-vis and NMR) and molecular modeling tools. Amongst the numerous molecular variables that have been studied, this study clearly illustrates how the chirality of a given set of aminoacids (proline in this case) of the peptide dictates the chirality of the metal center of the resulting metallopeptide. Moreover, the relatively hydrophobic peptidic models used in this work show that the most stable structures present reduced solvent contacts and, in counterpart, stabilize the cis configuration of the proline residues.


Assuntos
Metaloproteínas/química , Peptídeos/química , Dobramento de Proteína , 2,2'-Dipiridil/química , Compostos Ferrosos/química , Estrutura Molecular , Teoria Quântica
15.
Chem Commun (Camb) ; 52(6): 1234-7, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26611126

RESUMO

We demonstrate the application of solid-phase peptide synthesis methods for the straightforward assembly of polynuclear Ir(III) organometallopeptides, and show that their oligoarginine derivatives exhibit high DNA binding affinity, sequence selectivity, and high cytotoxicity towards a set of cancer cell lines.


Assuntos
DNA/metabolismo , Irídio/metabolismo , Metaloproteínas/metabolismo , Compostos Organometálicos/metabolismo , Microscopia de Força Atômica
16.
Chem Commun (Camb) ; 50(76): 11097-100, 2014 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-25014483

RESUMO

A flexible and versatile synthetic approach for the construction of water-stable DNA-binding chiral peptide helicates based on the solid phase peptide synthesis (SPPS) methodology is reported.


Assuntos
DNA/química , Metaloproteínas/química , Sítios de Ligação , Modelos Moleculares , Estrutura Molecular , Estereoisomerismo , Água/química
17.
Chemistry ; 19(40): 13369-75, 2013 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-23943195

RESUMO

A new bipyridine building block has been used for the solid-phase synthesis of dinuclear DNA-binding ruthenium(II) metallopeptides. Detailed spectroscopic studies suggest that these compounds bind to the DNA by insertion into the DNA minor groove. Moreover, the potential of the solid-phase peptide synthesis approach is demonstrated by the straightforward synthesis of an octaarginine derivative that shows effective cellular internalization and cytotoxicity linked with strong DNA interaction, as evidenced by steady-state fluorescence spectroscopy and AFM studies.


Assuntos
2,2'-Dipiridil/química , Complexos de Coordenação/química , DNA/química , Metaloproteínas/química , Rutênio/química , Sítios de Ligação , Técnicas de Síntese em Fase Sólida , Espectrometria de Fluorescência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA